Eruption aux Tonga et les perturbations ionosphériques // Tonga eruption and ionospheric disturbances

Plusieurs études ont confirmé récemment que l’éruption du volcan Hunga Tonga-Hunga Ha’apai aux Tonga le 15 janvier 2022 a provoqué des perturbations à grande échelle dans l’atmosphère terrestre.
En utilisant les données enregistrées par plus de 5 000 récepteurs GNSS – Global Navigation Satellite System – situés à travers le monde, les scientifiques de l’Observatoire Haystack du Massachusetts Institute of Technology (MIT) et leurs collègues de l’Université arctique de Norvège ont observé des preuves d’ondes atmosphériques générées par les éruptions et de leurs empreintes ionosphériques à 300 kilomètres au-dessus de la surface de la Terre, et cela pendant une longue période. Ces ondes atmosphériques ont été actives pendant au moins quatre jours après l’éruption et ont fait trois fois le tour du globe. Les perturbations ionosphériques sont passées au-dessus des États-Unis six fois, d’abord d’ouest en est, puis en sens inverse.
Cette éruption a été extraordinairement puissante et a libéré une énergie équivalente à 1 000 bombes atomiques de Hiroshima. Les scientifiques savent que les éruptions volcaniques te type explosif et les séismes peuvent déclencher une série d’ondes influant sur la pression atmosphérique, y compris des ondes acoustiques, qui peuvent perturber la haute atmosphère à plusieurs centaines de kilomètres au-dessus de l’épicentre. Au-dessus de l’océan, ces ondes peuvent déclencher des vagues de tsunami, et donc des perturbations dans la haute atmosphère. L’impact de l’éruption aux Tonga a surpris les scientifiques, notamment par son étendue géographique et sa durée de plusieurs jours. L’étude de ces ondes a permis de nouvelles découvertes quant à la façon dont les ondes atmosphériques et l’ionosphère sont connectées.
Une nouvelle étude, menée par des chercheurs du MIT Haystack Observatory et de l’Arctic University of Norway, a été publiée le 23 mars 2022 dans la revue Frontiers in Astronomy and Space Sciences. Les auteurs pensent que les perturbations atmosphériques sont un effet des ondes de Lamb ; ces ondes, ainsi appelées d’après le mathématicien Horace Lamb, se déplacent à la vitesse du son sans grande réduction de leur amplitude. Bien qu’elles soient principalement situées près de la surface de la Terre, ces ondes peuvent échanger de l’énergie avec l’ionosphère de manière complexe. La nouvelle étude précise que « la présence dominante des ondes de Lamb a déjà été signalée lors de l’éruption du Krakatau en 1883 et à d’autres occasions. L’étude fournit pour la première fois une preuve substantielle de leurs empreintes de longue durée dans l’ionosphère à l’échelle de la planète. »
Grâce au financement de la National Science Foundation, le Haystack Observatory concentre les observations du réseau GNSS mondial pour étudier quotidiennement des informations importantes depuis 2000. Une forme particulière de météo spatiale, causée par des ondes ionosphériques appelées perturbations ionosphériques itinérantes – Traveling Ionospheric Disturbances (TID) – est souvent favorisée par des processus comprenant des apports soudains d’énergie du soleil, des conditions météorologiques terrestres et des perturbations d’origine humaine.
Selon l’étude, seules les tempêtes solaires intenses sont connues pour produire une propagation de TID dans l’espace pendant plusieurs heures, voire plusieurs jours. Les éruptions volcaniques et les séismes ne produisent normalement des perturbations ionosphériques que sur des milliers de kilomètres. En détectant ces importantes perturbations ionosphériques induites dans l’espace par les éruptions sur de très longues distances, les chercheurs ont découvert non seulement la génération d’ondes de Lamb et leur propagation globale sur plusieurs jours, mais aussi un nouveau processus physique fondamental.
Source:Massachusetts Institue of Technology (MIT).

——————————————-

The recent eruption of Tonga’s Hunga Tonga–Hunga Ha‘apai volcano on January 15th, 2022 was recently confirmed to have causeded large-scale disturbances in the Earth’s atmosphere.

Using data recorded by more than 5,000 Global Navigation Satellite System (GNSS) ground receivers located around the globe, MIT Haystack Observatory scientists and their international partners from the Arctic University of Norway have observed substantial evidence of eruption-generated atmospheric waves and their ionospheric imprints 300 kilometers above the Earth’s surface over an extended period. These atmospheric waves were active for at least four days after the eruption and circled the globe three times. Ionospheric disturbances passed over the United States six times, at first from west to east and later in reverse.

This volcanic event was extraordinarily powerful, releasing energy equivalent to 1,000 Hiroshima atomic bombs. Scientists have known that explosive volcanic eruptions and earthquakes can trigger a series of atmospheric pressure waves, including acoustic waves, that can perturb the upper atmosphere a few hundred kilometers above the epicenter. When over the ocean, they can trigger tsunami waves, and therefore upper-atmospheric disturbances. Results from this Tonga eruption have surprised this international team, particularly in their geographic extent and multiple-day durations. These discoveries ultimately suggest new ways in which the atmospheric waves and the global ionosphere are connected.

A new study, led by researchers at MIT Haystack Observatory and the Arctic University of Norway, was published on March 23rd, 2022 in the journal Frontiers in Astronomy and Space Sciences. The authors believe the disturbances to be an effect of Lamb waves; these waves, named after mathematician Horace Lamb, travel at the speed of sound without much reduction in amplitude. Although they are located predominantly near Earth’s surface, these waves can exchange energy with the ionosphere through complex pathways. As stated in the new study, “prevailing Lamb waves have been reported before as atmospheric responses to the Krakatoa eruption in 1883 and other occasionss. This study provides substantial first evidence of their long-duration imprints up in the global ionosphere.”

Under National Science Foundation support, Haystack has been assembling global GNSS network observations ton a daily basis since 2000. A particular form of space weather, caused by ionospheric waves called traveling ionospheric disturbances (TIDs), are often excited by processes including sudden energy inputs from the sun, terrestrial weather, and human-made disturbances.

According to the study, only severe solar storms are known to produce TID global propagation in space for several hours, if not for days. Volcanic eruptions and earthquakes normally yield ionospheric disturbances only within thousands of kilometers. By detecting these significant eruption-induced ionospheric disturbances in space over very large distances, the researchers found not only generation of Lamb waves and their global propagation over several days, but also a fundamental new physical process.

Source: Massachusetts Institute of Technology (MIT).

Perturbations ionosphériques itinérantes (TID) après l’éruption des Tonga, mesurées à partir des réseaux GNSS de récepteurs. L’axe horizontal indique le temps ; l’axe vertical indique la distance. Les TID se propagent à la fois vers le nord et vers le sud à partir des Tonga. L’antipode de l’éruption se situe en Afrique du Nord, à environ 21 000 km des Tonga. Les TID ont mis 17 à 18 heures pour atteindre l’antipode et le même temps pour revenir aux Tonga le lendemain. (Source: Hayward Observatory).

Traveling ionospheric disturbances (TID) following the Tonga eruption, as measured from the GNSS networks of receivers. The horizontal axis shows time; the vertical axis shows distance. TIDs are propagating both northward and southward from Tonga. The eruption antipode is in North Africa, approximately 21,000 km away from Tonga. TIDs took 17-18 hours to reach the antipode and the same time to return to Tonga on the next day. (Source: Hayward Observatory).

Eruption du Hunga Tonga-Hunga-Ha’apai : pas d’effet sur la température terrestre // No impact on Earth’s temperature

Les scientifiques viennent de confirmer que l’éruption sous-marine du Hunga Tonga-Hunga Ha’apai en janvier 2022 n’affectera pas le climat de la Terre malgré la présence de nuages de cendres de dizaines de kilomètres de hauteur dans l’atmosphère (voir ma note précédente à ce sujet),
De puissantes éruptions volcaniques provoquent parfois un refroidissement à court terme de la planète, mais ce ne sera pas le cas avec le récent événement dans l’archipel des Tonga.
Une nouvelle étude confirme en effet les estimations précédentes. Elle indique que l’effet de refroidissement du Hunga Tonga ne dépasserait pas 0,004 ° C dans l’hémisphère nord et 0,01 ° C dans l’hémisphère sud, ce qui est encore moins que certaines estimations précédentes.
La clé de l’impact d’une éruption volcanique sur la température de la Terre est la quantité de dioxyde de soufre (SO2) qui a été émise par le volcan. En effet, dans l’atmosphère, le gaz forme des particules d’aérosol qui font obstacle à la lumière du soleil, avec diminution de la quantité d’énergie qui entre dans le système terrestre. Par exemple, l’éruption du Pinatubo en 1991 a entraîné un refroidissement d’environ 0,6°C qui a duré près de deux ans. La différence avec l’éruption aux Tonga, c’est que les cendres rejetées dans l’air par le Pinatubo contenaient environ 50 fois plus de dioxyde de soufre.
Source : space.com.

——————————————

Scientists have just confirmed that the Hunga Tonga submarine eruption in January 2022 will not affect Earth’s climate despite sending clouds of ash dozens of kilometers high into the atmosphere (see my previous post about this topic),

Powerful volcanic eruptions sometimes cause short-term cooling of the planet, but this won’t be the case of the recent Tonga event.

A new study confirms previous estimates, stating that the cooling effect of Hunga Tonga could range from just 0.004°C in the northern hemisphere to 0.01°C in the southern hemisphere, which is even less than some of the previous estimates expected.

The key to the impact of a volcanic eruption on the Earth’s temperature is the amounrt of sulfur dioxide (SO2) that has been emitted by the volcano. Indeed, in the atmosphere the gas forms aerosol particles, which deflect sunlight, thus decreasing the amount of energy that enters the Earth’s system. For example, the 1991 explosive eruption of Mount Pinatubo produced a cooling of about 0.6°C that lasted for nearly two years. The difference with the Tonga eruption is that the ash spewed into the air by Mount Pinatubo contained about 50 times as much sulfur dioxide.

Source: space.com.

Effet de l’éruption du Pinatubo sur l’atmosphère (Source : Wikipedia)

L’éruption du Hunga Tonga-Hunga Ha’apai (Tonga) a battu des records // The Hunga Tonga-Hunga Ha’apai eruption (Tonga) broke records

L’éruption sous-marine du Hunga Tonga-Hunga Ha’apai (archipel des Tonga) le 15 janvier 2022 a battu simultanément deux records : le panache volcanique a atteint des hauteurs encore jamais observées par les satellites, et l’éruption a généré un nombre encore jamais observé d’éclairs, avec près de 590 000 impacts de foudre en trois jours.
Deux satellites météorologiques – le Geostationary Operational Environmental Satellite 17 (GOES-17) de la NOAA et le Himawari-8 de l’Agence japonaise d’exploration aérospatiale – ont observé cette éruption exceptionnelle depuis l’espace, ce qui a permis aux scientifiques de calculer jusqu’où le panache avait pénétré dans l’atmosphère.Ils ont déterminé que, à son point culminant, le panache s’est élevé à une hauteur de 58 km, ce qui signifie qu’il a percé la mésosphère, la troisième couche de l’atmosphère. Après qu’une première explosion ait généré ce panache très volumineux, une nouvelle explosion a propulsé des cendres, du gaz et de la vapeur à plus de 50 km dans le ciel. A titre de comparaison, en 1991, le mont Pinatubo (Philippines) avait généré un panache qui s’étendait sur 35 km au-dessus du volcan. Dans la stratosphère (donc sous la mésosphère), le gaz et les cendres du volcan se sont accumulés et se sont étalés pour couvrir une superficie de 157 000 kilomètres carrés.
Pour étudier la foudre, l’équipe scientifique a utilisé les données de GLD360, un réseau de détection de foudre au sol. Ces données ont révélé que, sur les quelque 590 000 coups de foudre détectés lors de l’éruption, environ 400 000 se sont produits dans les six heures qui ont suivi la puissante explosion du 15 janvier.
Avant l’éruption du Hunga Tonga-Hunga Ha’apai, le plus grand événement de foudre volcanique s’était produit en Indonésie en 2018, lorsque l’Anak Krakatau est entré en éruption et a généré environ 340 000 éclairs en une semaine. Environ 56% de la foudre produite par l’éruption des Tonga a frappé la surface de la terre ou de l’océan, et plus de 1 300 impacts ont été recensés sur l’île principale des Tonga, Tongatapu.
La foudre peut se diviser en deux catégories. Un type de foudre a été causé par une « charge sèche », dans laquelle des cendres, des roches et des particules de lave entrent en collision dans l’air et échangent des électrons chargés négativement. Le deuxième type de foudre a été causé par la « charge de glace », qui se produit lorsque le panache volcanique atteint des hauteurs où l’eau peut geler et former des particules de glace qui s’entrechoquent.
Ces deux processus conduisent à des coups de foudre en provoquant l’accumulation d’électrons sur la partie inférieure des nuages; ces particules chargées négativement jaillissent ensuite vers des régions de nuages plus élevées et chargées positivement ou vers des régions chargées positivement du sol ou de la mer en dessous.
Source : space.com.

—————————————–

The submarine eruption that occurred in the Tonga archipelago on January 15th, 2022 shattered two records simultaneously: The volcanic plume reached greater heights than any eruption ever captured in the satellite record, and the eruption generated an unparalleled number of lightning strikes, with almost 590,000 bolts over the course of three days.

Two weather satellites – NOAA’s Geostationary Operational Environmental Satellite 17 (GOES-17) and the Japan Aerospace Exploration Agency’s Himawari-8 – captured the unusual eruption from above, allowing scientists to calculate just how far the plume penetrated the atmosphere.They determined that, at its highest point, the plume rose 58 km into the air, meaning it pierced the mesosphere, the third layer of the atmosphere. After an initial blast generated this towering plume, a secondary blast sent ash, gas and steam more than 50 km into the air. As a comparison,.in 1991, Mount Pinatubo (Philippines) unleashed a plume that extended 35 km above the volcano. In the stratosphere (beneath the mesosphere), gas and ash from the volcano accumulated and spread to cover an area of 157,000 square kilometers.

To study the lightning, the scientific team used data from GLD360, a ground-based lightning detection network. These data revealed that, of the nearly 590,000 lightning strikes that took place during the eruption, about 400,000 occurred within six hours after the big blast on January 15th.

Prior to the Tonga eruption, the largest volcanic lightning event happened in Indonesia in 2018, when Anak Krakatau erupted and generated about 340,000 lightning strikes over the course of a week. About 56% of the lightning during the Tonga eruption struck the surface of the land or ocean, and more than 1,300 strikes landed on Tonga’s main island of Tongatapu.

The lightning came in two categories. One type of lightning was caused by « dry charging, » in which ash, rocks and lava particles repeatedly collide in the air and swap negatively charged electrons. The second type of lightning was caused by « ice charging, » which occurs when the volcanic plume reaches heights where water can freeze and form ice particles that slam into each other.

Both of these processes lead to lightning strikes by causing electrons to build up on the undersides of the clouds; these negatively charged particles then leap to higher, positively charged regions of the clouds or to positively charged regions of the ground or sea below.

Source : space.com.

Panache émis par l’éruption du 15 janvier 2022 (Source: Tonga Services

Les ondes sonores de l’éruption aux Tonga // The sonic waves of the Tonga eruption

L’explosion du volcan sous-marin Hunga Tonga-Hunga-Ha’apai le 15 janvier 2022 dans l’archipel des Tonga a été « entendue » dans le monde entier. Selon un communiqué de presse de l’Université d’Hawaï, l’éruption a déclenché une onde sonore qui s’est répercutée dans l’atmosphère terrestre et a été enregistrée dans le monde entier par des stations de surveillance… et des smartphones.
L’éruption dévastatrice a produit l’onde de choc la plus puissante depuis l’éruption du Krakatau (Indonésie) en 1883. Les systèmes de surveillance de l’Université d’Hawaii qui épient en permanence les infrasons – sons inaudibles produits par des événements naturels extrêmes, tels que des éruptions volcaniques, des impacts d’astéroïdes et des explosions intenses – ont enregistré l’éruption des Tonga sur des capteurs d’infrasons et de pression conventionnels, ainsi qu’avec un réseau de capteurs de smartphones, ce qui montre que les smartphones peuvent enregistrer de puissantes explosions à des milliers de kilomètres.
Jusqu’à l’éruption aux Tonga, l’explosion du météore de Tcheliabinsk en 2013 au-dessus de la Russie était la plus puissante explosion atmosphérique enregistrée depuis le début de l’ère numérique. On compare généralement l’intensité des impacts de météores et des éruptions volcaniques à l’énergie équivalente d’une explosion de TNT. Avec une énergie estimée à 500 kilotonnes de TNT, l’onde de choc du météore russe avait été enregistrée par des systèmes de surveillance géophysique conventionnels sur toute la Terre.
En 2014, le département d’État américain a encouragé le développement de l’application RedVox Recorder pour smartphones dont le but était de détecter les infrasons des explosions atmosphériques. Plus récemment, dans le cadre des objectifs de non-prolifération nucléaire, le financement des recherches par la National Nuclear Security Administration, sous l’égide du Département de l’Énergie, a permis de développer une technologie adaptée aux smartphones et d’augmenter les capacités de mesure de diverses signatures sonores et vibratoires près de la surface de la Terre, ainsi que dans la haute atmosphère et l’océan.
Des équipes d’ingénieurs et de programmeurs ont contribué à faire mûrir la technologie et à la rendre accessible au public. L’application gratuite RedVox Infrasound Recorder est disponible pour les appareils Apple et Android et fonctionne sur la plupart des smartphones modernes.
À partir de calculs basés sur les données de pression collectées via l’application et les capteurs conventionnels, on peut estimer que l’explosion des Tonga était plus importante que celle de Tsar Bomba, qui, avec 50 mégatonnes, était l’arme nucléaire la plus puissante jamais testée. L’explosion des Tonga est probablement proche de l’explosion du Krakatau en 1883, estimée à 200 mégatonnes.
Source : médias d’information hawaïens.

—————————————————

The explosion of the Hunga Tonga-Hunga-Haʻapai submarine volcano on January 15th, 2022 in theTonga archipelago was “heard” around the globe. According to a University of Hawaiʻi press release, the eruption released a blast “sound” wave that reverberated through Earth’s atmosphere and was recorded around the world by monitoring stations…and smartphones.

The devastating eruption produced the most powerful air blast since the 1883 eruption of Krakatoa in Indonesia. Monitoring systems at UH-Mānoa that continuously listen for infrasound – deep, inaudible atmospheric sound produced by extreme natural events, such as volcanoes, asteroid impacts and intense explosions – recorded the Tonga eruption on traditional infrasound and pressure sensors, as well as with a network of smartphone sensors, showing that smartphones can record large blasts from thousands of kilometers away.

Until the event in Tonga, the 2013 Chelyabinsk meteor over Russia was the largest atmospheric blast recorded in the digital era. The blast intensity of meteor impacts and volcanic eruptions is commonly reported relative to the energy from an equivalent TNT explosion. At an estimated yield of 500 kilotons of TNT, the Russian meteor blast wave was recorded by conventional geophysical monitoring systems all over Earth.

In 2014, the U.S. State Department supported the development of the RedVox Recorder smartphone application to detect infrasound from atmospheric blasts. More recently, in support of the nation’s nuclear nonproliferation goals, research funding from the U.S. Department of Energy’s National Nuclear Security Administration allowed the expansion of the smartphone technology and the increase of capabilities to measure diverse sound and vibration signatures near Earth’s surface, as well as in the upper atmosphere and the ocean.

Teams of engineers and programmers have contributed to mature the technology and make it available to the public. The free RedVox Infrasound Recorder app is available for Apple and Android devices and runs on most modern smartphones.

From calculations based on pressure data collected via the app and traditional sensors, one can estimate the Tonga blast was larger than Tsar Bomba’s, which at 50 megatons was the most powerful nuclear weapon ever tested. It is likely to be closer to the 1883 Krakatoa blast, which weighed in at 200 megatons.

Source: Hawaiian news media.

L’Infrasound Laboratory de l’Université d’Hawaii a réalisé une capture du signal de l’éruption des Tonga sur les smartphones via l’application RedVox. (Source: Université d’Hawaii).