Du Ladakh à la Suisse, les stupas de glace // From Ladakh to Switzerland, ice stupas

Le 11 février 2021, on pouvait lire sur le site web Swiss Info qu’un projet pilote venait d’être lancé près de Pontresina (canton des Grisons) pour ralentir la fonte du glacier de Morteratsch, et qu’une technique venue de l’Himalya était notamment utilisée.

Baptisé « MortAlive », le projet a pour but de recycler les eaux de fonte du glacier. Il s’agit d’accumuler ces eaux de fonte en été pour en faire ensuite de la neige qui sera ensuite déposée sur le glacier en hiver.

Une glaciologue explique que tant qu’il y a de la neige sur la glace, le glacier est protégé. En effet, comme cela se passe sur la banquise, la neige reflète le rayonnement solaire et isole le glacier des températures élevées durant l’été.

Les systèmes d’enneigement conventionnels avec des canons à neige ne peuvent pas être utilisés en raison des mouvements des glaciers. C’est pourquoi des spécialistes ont mis au point une « corde à neige » équipée de cinq buses qui est actuellement testée.En plus de la « corde à neige », les techniciens utilisent aussi des « Ice stupa », des stupas de glace. Ces cônes de glace servent à stocker les eaux de fonte. Ils ont été inventés dans l’Himalaya où ils sont utilisés pour l’irrigation au printemps.

°°°°°°°°°°

Le 22 juillet 2017, j’écrivais sur ce blog une note à ce sujet. L’histoire des stupas de glace se passe au Ladakh – le « pays des hautes passes » – une région de l’Inde prise en sandwich entre deux des plus hautes chaînes de montagnes du monde, l’Himalaya et le Kunlun. Les précipitations sont rares dans cette région. L’eau, indispensable à l’irrigation des terres agricoles provient principalement de la fonte de la neige et de la glace. Cependant, le changement climatique rend cette terre encore plus sèche, laissant les agriculteurs en manque d’eau dans les mois d’avril et mai, si importants pour les plantations, juste avant que les glaciers commencent à fondre sous le soleil de l’été.
En 2014, un ingénieur en mécanique de la région a décidé de s’attaquer à la crise de l’eau au Ladakh où les glaciers reculent en raison de la hausse des températures. Ils laissent échapper beaucoup moins d’eau au début du printemps mais en fournissent une grande quantité avec la chaleur de l’été qui les amenuise encore davantage.
L’ingénieur avait en tête une idée simple: il voulait rééquilibrer ce déficit naturel en recueillant l’eau provenant de la fonte de la neige et de la glace au cours des mois froids (cette eau est perdue pour tout le monde) et en la stockant jusqu’au printemps, moment où les agriculteurs en ont le plus besoin. Pour ce faire, il a construit un « stupa de glace », cône de glace à deux niveaux, ainsi baptisé par référence aux monuments sacrés traditionnels que l’on rencontre dans toute l’Asie.
Le stupa de glace est édifié sans avoir besoin d’électricité ou de pompes, uniquement grâce à la physique. Tout d’abord, un tuyau est installé sous terre ; il relie un cours d’eau et l’endroit où le stupa de glace doit être implanté, généralement à côté d’un village. L’eau doit provenir d’un point plus élevé, d’une soixantaine de mètres ou plus. Comme un fluide dans un circuit maintient toujours son niveau – selon le principe des vases communicants – l’eau qui provient de 60 mètres en amont gicle à 60 mètres en l’air à la sortie du tuyau en aval, créant une fontaine. La température négative de l’air fait le reste et cristallise immédiatement les gouttelettes d’eau sous forme de glace qui tombe juste en dessous en formant un cône. Un cône est très facile à fabriquer avec de la glace, car tout écoulement sous forme de gouttes forme naturellement un cône. Les glaçons sont eux-mêmes des cônes inversés.
Un cône a des propriétés très intéressantes: il a une surface d’exposition minimale par rapport au volume d’eau qu’il contient; Cela signifie qu’il fond très lentement. Le prototype de 6 mètres de hauteur contenant 150 000 litres d’eau a duré de l’hiver jusqu’à la mi-mai, au moment précis où l’eau était nécessaire pour l’irrigation, alors que toutes les glaces environnantes avaient disparu fin mars. L’aspect révolutionnaire du stupa est qu’il fonctionne même à basse altitude et à des températures très chaudes.
Ce n’est pas la première fois que l’on essaye de créer un glacier artificiel dans la région, mais les tentatives précédentes ont eu lieu au-dessus de 4 000 mètres d’altitude en faisant geler l’eau dans de grands canaux qui exigeaient de l’ombre et beaucoup d’entretien, et étaient situés trop loin des champs pour être pratiques.
En raison de l’infrastructure de tuyauterie requise, le coût initial du projet est relativement élevé. L’ingénieur en mécanique a estimé qu’il aurait besoin d’environ 125 000 dollars pour réaliser la première version du stupa de glace à grande échelle. Il pourrait atteindre 25 mètres de hauteur et permettre l’irrigation d’une dizaine d’hectares de cultures. Conscient que ce coût serait trop élevé pour les autorités locales, il a décidé d’avoir recours à un financement participatif par l’intermédiaire de la plateforme Indiegogo. Cette initiative a été couronnée de succès et a suscité l’intérêt des institutions locales. En fin de compte, le gouvernement du Ladhak l’a intégrée dans ses plans de développement. Le stupa de glace a également remporté un Rolex Award for Enterprise en 2016, ce qui a rapporté une somme de 100 000 francs suisses (environ 105 000 dollars).

Les stupas de glace pourraient également être transformés en attractions touristiques, en y incorporant des bars à glace et des hôtels de glace. Cela reviendrait à mélanger le sacré et le profane et construire un pont entre différentes cultures.

————————————————

On February 11th, 2021, one could read on the Swiss Info website that a pilot project had just been launched near Pontresina (canton of Graubünden) to slow the melting of the Morteratsch glacier, and that a technique coming from the Himalya was notably used.

Called « MortAlive », the project aims to recycle the meltwater from the glacier. It accumulates meltwater in summer to then make snow which will be deposited on the glacier in winter.

A glaciologist explains that as long as there is snow on the ice, the glacier is protected. Indeed, as happens on the Arctic ice sheet, the snow reflects solar radiation and isolates the glacier from high temperatures during the summer.

Conventional snowmaking systems with snow cannons cannot be used due to the movements of glaciers. This is why specialists have developed a « snow rope » equipped with five nozzles which is currently being tested. In addition to the « snow rope », technicians also use « Ice stupas ». These ice cones are used to store meltwater. They were invented in the Himalayas where they are used for spring irrigation.

°°°°°°°°°°

On July 22nd, 2017, I wrote post on this blog about this topic. The story of the ice stupas is set in Ladakh – the « land of the high passes » – a region of India sandwiched between two of the world’s highest mountain ranges, the Himalayas and the Kunlun. Rainfall is scarce in this region. Water, essential for irrigating agricultural land, comes mainly from melting snow and ice. However, climate change is making this land even drier, leaving farmers running out of water in the months of April and May, so important for plantations, just before the glaciers start to melt in the summer sun. .

In 2014, a local mechanical engineer decided to tackle the water crisis in Ladakh where glaciers are retreating due to rising temperatures. They provide much less water in early spring but let out a great deal of it with the summer heat, shrinking even more.

The engineer had a simple idea in mind: he wanted to rebalance this natural deficit by collecting the water from the melting snow and ice during the cold months (this water is lost for everyone) and by removing it. And storing until spring, when farmers need it most. To do this, he built an « ice stupa », a two-tiered cone of ice, named after traditional sacred monuments that are found throughout Asia.

The ice stupa is built without the need for electricity or pumps, only through physics. First, a pipe is installed underground; it connects a stream and the place where the ice stupa is required, usually next to a village. The water must come from a higher point, sixty metres or more. As a fluid in a circuit always maintains its level – according to the principle of communicating vessels – the water which comes from 60 metres upstream spays 60 metres into the air at the outlet of the downstream pipe, creating a fountain. The negative temperature of the air does the rest and immediately crystallizes the water droplets in the form of ice which falls just below, forming a cone. A cone is very easy to make with ice, because any flow in the form of drops naturally forms a cone. The ice cubes are themselves inverted cones.

A cone has very interesting properties: it has a minimum exposure surface relative to the volume of water it contains; This means that it melts very slowly. The 6-metre-high prototype containing 150,000 litres of water lasted from winter until mid-May, at the exact moment when water was needed for irrigation, when all the surrounding ice had disappeared by the end of March. The revolutionary aspect of the stupa is that it functions even at low altitudes and in very hot temperatures.

This is not the first time that attempts have been made to create an artificial glacier in the region, but previous attempts were made above 4000 metres above sea level by freezing the water in large canals which required shade and a lot of maintenance, and were located too far from fields to be practical.

Due to the required piping infrastructure, the initial cost of the project is relatively high. The mechanical engineer estimated that he would need around $ 125,000 to make the first full-scale version of the ice stupa. It could reach 25 metres in height and allow the irrigation of ten hectares of crops. Realizing that this cost would be too high for local authorities, he decided to resort to crowdfunding through the Indiegogo platform. This initiative was successful and aroused the interest of local institutions. In the end, the government of Ladhak incorporated it into its development plans. The ice stupa also won a Rolex Award for Enterprise in 2016, which brought in 100,000 Swiss francs (approximately $ 105,000). Ice stupas could also be turned into tourist attractions, incorporating ice bars and ice hotels. It would amount to mixing the sacred and the profane and building a bridge between different cultures.

Source: CNN.

Vue du prototype du stupa de glace au Ladakh

(Crédit photo: Sonam Wangchuk)

Injecter le CO2 dans le sous-sol de la Mer du Nord, une bonne idée ? // Is it a good idea to inject CO2 in the North Sea’s subsoil ?

Le gaz carbonique (CO2) est l’un des principaux gaz à effet de serre d’origine anthropique. Afin de s’approcher le plus possible des objectifs de la COP 21 et de l’Accord de Paris sur le climat, des projets sont mis en oeuvre pour essayer de se débarrasser de ce gaz polluant. .

Dans une note publiée le 17 juin 2016, j’abordais le projet CarbFix lancé en Islande à côté d’une centrale géothermique dans la périphérie de Reykjavik. Cette centrale exploite une source de vapeur produite par le magma à faible profondeur, en sachant que du CO2 et des gaz soufrés d’origine volcanique sont émis en même temps que la vapeur. Le but est de capter le gaz et de le réinjecter dans le sous-sol. Vous pourrez lire cette note en cliquant sur ce lien :

https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

La Suisse s’intéresse elle aussi au stockage du gaz carbonique. C’est ainsi que les usines de retraitement des déchets appellent la Confédération à créer un vaste réseau de gazoducs pour exporter leur CO2 vers la Norvège, où il serait stocké dans d’anciens gisements de gaz naturel sous la mer du Nord. Les 30 usines suisses de retraitement des déchets produisent chacune plus de 100 000 tonnes de CO2 par an.

Comme la Suisse ne dispose pas de capacité de stockage suffisante, les incinérateurs veulent relier leurs usines à un réseau de gazoducs qui permettrait d’exporter ce gaz carbonique vers le nord de l’Europe et plus particulièrement la Norvège. Le pays stocke déjà avec succès du CO2 dans d’anciens gisements de gaz naturel sous la mer du Nord depuis 1996 et il s’apprête d’ici 2024 à ouvrir de nouveaux réservoirs pour y enfouir du CO2 européen.

Plusieurs géants pétroliers comme BP, Royal Dutch Shell et Total ont annoncé le 26 octobre 2020 un partenariat pour mettre en place des infrastructures de transport et de stockage de CO2 en mer du Nord britannique, afin de réduire la pollution du secteur industriel.

Cette initiative, menée par BP, est portée également par le norvégien Equinor, l’italien Eni et le gestionnaire du réseau électrique britannique National Grid. Leur objectif est de participer à deux projets déjà lancés et visant à décarboner des régions industrielles dans le nord de l’Angleterre avec pour objectif d’atteindre la neutralité carbone en 2030.

Ces projets doivent voir le jour en 2026 et misent sur le captage de CO2 émis par les industries ainsi que sur l’utilisation de carburant à partir d’hydrogène. Le captage vise à récupérer le CO2 dans les fumées, à le transporter puis le stocker dans le sous-sol, mais cette technique est coûteuse et encore peu développée.

L’enfouissement du CO2 dans des couches géologiques profondes ne fait pas l’unanimité. Selon Greenpeace, il n’est pas encore prouvé que le CO2 qu’on envoie dans ces couches géologiques y reste; on n’est pas sûr qu’il n’y ait pas de fuites, ne serait-ce que par le biais de failles ou de fractures géologiques, sans parler d’anciens puits dont le colmatage n’est pas forcément parfaitement hermétique. Il est bien évident que du CO2 qui s’échapperait dans la mer mettrait en danger l’écosystème marin et entraîner à fortiori des risques pour la santé humaine.

———————————————

Carbon dioxide (CO2) is one of the main greenhouse gases of anthropogenic origin. In order to try and reach the objectives of COP 21 and the Paris Climate Agreement, projects are being implemented to try to get rid of this polluting gas. .

In a note published on June 17, 2016, I referred to the CarbFix project launched in Iceland alongside a geothermal power plant on the outskirts of Reykjavik. This plant uses a source of steam above Iceland’s shallow magma chambers , but some CO2 and sulfur gases of volcanic origin are emitted at the same time as the steam. The goal is to capture the gas and re-inject it underground. You can read this post by clicking on this link:
https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

Switzerland is also interested in storing carbon dioxide. The waste reprocessing factories are calling on the Confederation to create a vast network of pipelines to export their CO2 to Norway, where it would be stored in former natural gas fields under the North Sea. The 30 Swiss waste reprocessing plants each produce more than 100,000 tonnes of CO2 per year.
As Switzerland does not have sufficient storage capacity, the incinerators want to connect their factories to a network of pipelines that would allow this carbon dioxide to be exported to northern Europe and more particularly to Norway. The country has already successfully stored CO2 in old natural gas fields under the North Sea since 1996 and is preparing by 2024 to open new reservoirs to bury European CO2 in them.

Several oil giants such as BP, Royal Dutch Shell and Total announced on October 26th, 2020 a partnership to set up CO2 transport and storage infrastructure in the British North Sea, in order to reduce pollution in the industrial sector.
This initiative, led by BP, is also supported by the Norwegian Equinor, the Italian Eni and the operator of the British electricity network National Grid. Their objective is to participate in two projects already launched and aiming at decarbonizing industrial regions in the north of England with the aim of achieving carbon neutrality by 2030.
These projects are due to be achieved in 2026 and rely on the capture of CO2 emitted by industries as well as the use of fuel from hydrogen. Capture aims to recover the CO2 in the fumes, to transport it and then store it underground, but this technique is expensive and still underdeveloped.

There is no unanimous support for burying CO2 in deep geological layers. According to Greenpeace, it is not yet proven that the CO2 that is sent into these geological layers stays there; we are not sure that there are no leaks, if only through faults or geological fractures, not to mention old wells whose plugging is not necessarily perfectly hermetic. It is obvious that CO2 escaping into the sea would endanger the marine ecosystem and lead to risks for human health

Schéma illustrant le projet Northern Lights d’enfouissage du CO2 en Norvège (Source : Northern Lights).

Effondrement des glaciers alpins (suite, mais pas fin)

Alors que l’alerte a été levée sur le glacier de Planpincieux dans le Val Aoste (Italie), avec « un retour aux paramètres de risques habituels », un autre glacier alpin vient de montrer sa fragilité face aux assauts à répétition du réchauffement climatique.

Une partie du glacier valaisan de Tourtemagne (Suisse) s’est effondrée le 6 août 2020. La vidéo de cet événement est spectaculaire :

https://www.rts.ch/info/regions/valais/11517745-le-glacier-de-tourtemagne-coupe-en-deux-apres-un-effondrement-spectaculaire.html

La rupture du glacier de Tourtemagne en deux parties était attendue depuis longtemps. Plusieurs petites chutes de glace dans la journée avaient annoncé sa rupture imminente. Elle est survenue en fin de journée.

La rupture s’est faite au niveau d’une zone rocheuse à environ 2650 mètres d’altitude, à peu près à mi-chemin entre les cabanes de Tourtemagne et de Tracuit. Cette zone était recouverte d’une couche de glace chaque année plus fine, qui reliait les parties supérieure et inférieure du glacier.

Après l’effondrement de la glace, le torrent issu du glacier a été obstrué pendant deux heures. Afin d’évaluer le danger de crue, les responsables de l’installation hydroélectrique voisine ont pris une photo de la situation depuis un hélicoptère.

Long d’environ cinq kilomètres, le glacier de Tourtemagne s’étend sur le versant nord-ouest du Bishorn, l’un des « 4000 » valaisans, de 4100 m à 2310 m d’altitude environ.

De telles situations d’effondrement glaciaire sont amenées à se répéter. On estime que la moitié des glaciers alpins disparaîtra au cours des trente prochaines années.

Source : Radio Télévision Suisse (RTS).

IMPORTANT : En raison de l’épisode caniculaire actuel, le couloir du Goûter, sur la voie normale d’accès au sommet du Mont Blanc,, est devenu extrêmement dangereux à cause des chutes de pierres. En conséquence, le Préfet de Haute-Savoie a publié un communiqué dans lequel il met en garde les alpinistes qui voudraient emprunter cet itinéraire. .

Les chutes de pierres ont été particulièrement importantes et régulières à l’Aiguille du Goûter pendant la journée du lundi10 août 2020. Le PGHM de Chamonix a réalisé trois opérations de secours sur ce site.

Les prévisions météos n’indiquant pas de baisse significative des températures avant le jeudi 13 août, le Préfet en appelle à la responsabilité de chacun et invite à reporter l’ascension de la voie normale du Mont Blanc.

Partie frontale du glacier de Planpincieux (Italie)

Fracture dans le glacier de Tourtemagne (Suisse)

Source : RTS.

Les Suisses et le dégel du permafrost de roche // The Swiss and the thawing of rock permafrost

La presse suisse vient de diffuser plusieurs articles sur le dégel de ce que j’appelle le « permafrost de roche » dans les Alpes. Etant donné la surface occupée par les montagnes dans leurs pays, les Helvètes sont en première ligne devant ce phénomène et en particulier la fonte de la glace qui assure la cohésion des massifs rocheux.

J’ai alerté à plusieurs reprises sur le dégel du pergélisol en Sibérie, mais ce qui est vrai pour la Russie l’est aussi dans les Alpes: au-dessus de 2500 à 2600 mètres. La hausse constante des températures et le dégel du permafrost de roche ne sont n’est pas sans conséquences dans un pays montagneux comme la Suisse.

Les remontées mécaniques et les chemins de randonnée sont particulièrement menacés. Ces derniers ne sont parfois plus praticables à cause des chutes de pierres. Les glaciologues suisses expliquent que le permafrost peut atteindre 100 mètres de profondeur, mais le problème actuel concerne la couche dite ‘active’, autrement dit  jusqu’à 4 ou 5 mètres de profondeur. En effet, c’est sur elle que reposent de nombreuses structures alpines comme les refuges ou les remontées mécaniques dont certaines ont dû être fermées.

En octobre dernier, un affaissement de terrain provoqué par le dégel du pergélisol a entraîné la fermeture en urgence du spectaculaire téléphérique Fiescheralp-Eggishorn qui permet d’atteindre un extraordinaire point de vue sur le glacier d’Aletsch.
Par crainte des accidents, certaines communes ont décidé de poser des panneaux de fermeture sur les sentiers de montagne à risque pour dissuader randonneurs et alpinistes de les emprunter. Dans la vallée de Zermatt, plusieurs sections du célèbre sentier de randonnée de l’Europaweg ont été fermées ces dernières années en raison des risques d’éboulements

Source : Radio Télévision Suisse.

—————————————–

The Swiss press has just published several articles about the thawing of what I call « rock permafrost » in the Alps. Given the area occupied by the mountains in their country, the Helvetians are in the front line of this phenomenon and in particular the melting of the ice which ensures the cohesion of the rocks.
I have repeatedly warned of the thawing of permafrost in Siberia, but what is true for Russia is also true for the Alps: above 2,500 to 2,600 metres. The constant rise in temperatures and the thawing of rock permafrost are not without consequences in a mountainous country like Switzerland.
The ski lifts, cable cars and hiking trails are particularly threatened. The latter are sometimes no longer passable because of falling rocks. Swiss glaciologists explain that permafrost can reach 100 meters deep, but the current problem concerns the so-called « active » layer, in other words down to 4 or 5 metres deep. Indeed, many alpine structures such as mountain huts or ski lifts are built on it and some of them had to be closed.
Last October, a land subsidence caused by thawing permafrost led to the emergency closure of the spectacular Fiescheralp-Eggishorn cable car, which provides an extraordinary viewpoint over the Aletsch Glacier.
For fear of accidents, some municipalities have decided to put up closure signs on high-risk mountain trails to dissuade hikers and climbers from using them. In the Zermatt Valley, several sections of the famous Europaweg hiking trail have been closed in recent years due to the risk of landslides
Source: Radio Télévision Suisse.

Le superbe glacier d’Aletsch et la région de Zermatt, dominée par le Cervin, sont le paradis des randonneurs et des alpinistes, mais le dégel du permafrost de roche complique sérieusement la pratique ce ces activités (Photos : C. Grandpey)