Vers un froid solaire? // Toward a solar cold?

Dans une nouvelle étude publiée récemment dans la revue Temperature, une chercheuse russe démontre que le Soleil est entré dans le Grand Minimum Solaire de l’ère moderne (2020-2053) qui conduira à une réduction significative du champ magnétique et de l’activité solaires – comme pendant le Minimum de Maunder – et donc à une réduction notable de la température sur Terre.
Le Soleil est la principale source d’énergie pour toutes les planètes du système solaire. Cette énergie atteint la Terre sous forme de rayonnement solaire à différentes longueurs d’onde, appelée Irradiance Solaire Totale (TSI pour Total Solar Irradiance). Les variations de l’irradiance solaire entraînent un réchauffement de la haute atmosphère planétaire  et des processus complexes de transport de l’énergie solaire vers une surface planétaire.
Dans son étude, la scientifique démontre que les progrès récents réalisés dans la compréhension du rôle du champ magnétique de fond solaire dans la définition de l’activité solaire et dans la quantification des magnitudes du champ magnétique à différents moments ont permis une prévision fiable de l’activité solaire sur une échelle de temps d’un millénaire.
Cette approche a révélé la présence non seulement de cycles solaires de 11 ans, mais aussi de grands cycles solaires d’une durée de 350 à 400 ans. Ces grands cycles se forment par les interférences de deux ondes magnétiques de fréquences proches mais non égales produites par la double action de la dynamo solaire à différentes profondeurs à l’intérieur du Soleil. Ces grands cycles sont toujours séparés par de grands minima solaires – comme le Minimum de Maunder – qui se sont régulièrement produits dans le passé, formant les minima bien connus de Maunder, Wolf, Oort et Homeric, par exemple.
Au cours de ces grands minima solaires, il y a une réduction significative du champ magnétique solaire et de l’irradiance solaire, ce qui génère une réduction des températures sur Terre.
Le Grand Minimum Solaire le plus récent s’est produit pendant le Minimum de Maunder qui a duré 65 ans, de 1645 à 1710. Pendant cette période, les températures ont plongé dans une grande partie de l’hémisphère nord. Cela s’est probablement produit parce que l’irradiance solaire totale a été réduite de 0,22%, ce qui a entraîné une diminution de 1,0 à 1,5 ° C de la température terrestre moyenne, principalement en Europe dans l’hémisphère nord. Cette diminution apparemment faible de la température moyenne dans l’hémisphère nord a provoqué le gel des rivières, de longs hivers froids et des étés froids.
Au cours du Grand Minimum Solaire à venir – il a commencé en 2020 et devrait durer jusqu’en 2053 – il faut s’attendre à une réduction de la température terrestre moyenne jusqu’à 1,0°C, en particulier, pendant les périodes de minima solaires entre les cycles 25-26 et 26-27, c’est à dire dans la décennie 2031-2043.
La baisse de la température terrestre au cours des 30 prochaines années peut avoir des conséquences importantes sur la croissance de la végétation, l’agriculture, les approvisionnements alimentaires et les besoins de chauffage dans les hémisphères nord et sud. Ce refroidissement global pendant le prochain grand minimum solaire (2020–2053) est susceptible de compenser les effets du réchauffement climatique pendant trois décennies et exigerait des efforts intergouvernementaux pour s’attaquer aux problèmes qui affecteraient la population de la Terre.
Référence de l’étude :
« Modern Grand Solar Minimum will lead to terrestrial cooling » – Valentina Zharkova (2020) – Temperature – DOI : 10.1080/23328940.2020.1796243 – OPEN ACCESS

Annoncé également par la NASA, le Grand Minimum Solaire est bel et bien une réalité scientifique. L’agence américaine précise que le prochain cycle du soleil, le cycle 25, pourrait voir le plus faible nombre de taches depuis 200 ans.

La diminution de l’activité solaire pourrait-elle générer un refroidissement de l’atmosphère? Plusieurs éléments semblent aller dans ce sens. Les précédents refroidissements, c’est à dire les minima de Maunder et de Dalton,  eurent lieu en même temps qu’une diminution forte des taches solaires, donc de l’activité de notre étoile.

Les météorologues restent toutefois très prudents quant à la baisse des températures annoncée. Ils expliquent que ce n’est pas une preuve formelle mais un indice remarquable. Il se peut qu’un refroidissement se produise sur plusieurs décennies, mais la question est de savoir s’il parviendra à compenser l’accélération du réchauffement climatique actuel.

Source: The Watchers, NASA.

——————————————

In a new study published recently in the journal Temperature, a Russian researcher demonstrates that the Sun has entered into the modern Grand Solar Minimum (2020 – 2053) that will lead to a significant reduction of the solar magnetic field and activity like during Maunder minimum leading to a noticeable reduction of terrestrial temperature.

The Sun is the main source of energy for all planets of the solar system. This energy is delivered to Earth in a form of solar radiation in different wavelengths, called total solar irradiance. Variations of solar irradiance lead to heating of upper planetary atmosphere and complex processes of solar energy transport toward a planetary surface.

In her study, the scientist demonstrates that recent progress with the understanding of the role of solar background magnetic field in defining solar activity and with quantifying the observed magnitudes of the magnetic field at different times enabled reliable long-term prediction of solar activity on a millennium timescale.

This approach revealed the presence of not only 11-year solar cycles but also of grand solar cycles with a duration of 350 – 400 years. These grand cycles are formed by the interferences of two magnetic waves with close but not equal frequencies produced by the double solar dynamo action at different depths of the solar interior. These grand cycles are always separated by grand solar minima of Maunder minimum type, which regularly occurred in the past forming well-known Maunder, Wolf, Oort, Homeric, and other grand minima.

During these grand solar minima, there is a significant reduction of the solar magnetic field and solar irradiance, which impose the reduction of terrestrial temperatures.

The most recent grand solar minimum occurred during the Maunder Minimum which lasted 65 years, from 1645 to 1710. During this period, the temperatures across much of the northern hemisphere plunged. This likely occurred because the total solar irradiance was reduced by 0.22% that led to a decrease of the average terrestrial temperature measured mainly in the northern hemisphere in Europe by 1.0 – 1.5 °C. This seemingly small decrease in the average temperature in the northern hemisphere led to frozen rivers, cold long winters, and cold summers.

During the next grand minimum – it began in 2020 and will probably last until 2053 – one would expect to see a reduction of the average terrestrial temperature by up to 1.0 °C, especially, during the periods of solar minima between the cycles 25 – 26 and 26 – 27, e.g. in the decade 2031 – 2043.

The reduction of a terrestrial temperature during the next 30 years can have important implications for different parts of the planet on growing vegetation, agriculture, food supplies, and heating needs in both northern and southern hemispheres. This global cooling during the upcoming grand solar minimum (2020–2053) can offset for three decades any signs of global warming and would require inter-government efforts to tackle problems that would affect the whole population of the Earth.

Reference of the study:

« Modern Grand Solar Minimum will lead to terrestrial cooling » – Valentina Zharkova (2020) – Temperature – DOI: 10.1080/23328940.2020.1796243 – OPEN ACCESS

Also announced by NASA, the Great Solar Minimum is indeed a scientific reality. The US Agency says the Sun’s next cycle, Cycle 25, may see the lowest number of spots in 200 years.
Could the decrease in solar activity cause the atmosphere to cool? Several elements seem to point in this direction. The previous coolings, e.g the Maunder and Dalton minima, took place at the same time as a strong decrease in sunspots, and therefore in the activity of our star.
However, meteorologists remain very cautious about the announced drop in temperatures. They explain that this is not formal proof but a remarkable clue. Cooling may occur over several decades, but the question is whether it will offset the acceleration of current global warming. :

Source: The Watchers, NASA.

400 années de taches solaires, avec le célèbre Minimum de Maunder (Source: Wikipedia)

Corrélation entre activité solaire et activité sismique ? // A correlation between solar activity and seismic activity ?

Des études ont été faites sur l’influence possible de la Lune sur les éruptions volcaniques. J’ai personnellement travaillé sur la possible corrélation entre la pression atmosphérique et l’activité strombolienne (voir le résumé de cette étude sous l’entête de ce blog). Cependant, ces études n’ont pas apporté de réponses convaincantes sur le rôle joué par ces éléments naturels.

Une nouvelle étude réalisée par des chercheurs italiens et récemment publiée dans Nature Scientific Reports indique que de puissantes éruptions solaires peuvent déclencher de puissants séismes sur Terre. Les auteurs de l’étude ont analysé 20 années de données sur la densité et la vitesse des protons solaires, fournies par le satellite SOHO, et les données sur la sismicité dans le monde au cours de la période correspondante. Ils ont observé une corrélation évidente entre la densité de protons et la survenue de grands séismes de magnitude supérieure à M 5,6, avec un décalage d’une journée.
Le Soleil bombarde en permanence le système solaire avec de l’énergie et des particules sous forme de vent solaire. Parfois, les éruptions à la surface du Soleil provoquent des éjections de masse coronale qui traversent le système solaire à des vitesses extrêmement rapides. La nouvelle étude montre que les particules émises par ces éruptions peuvent être responsables du déclenchement de groupes de puissants séismes.
Les scientifiques ont remarqué que certains puissants séismes sur notre planète ont tendance à se produire en groupes,  et pas de manière aléatoire. Cela laisse supposer qu’il existe probablement un phénomène global de déclenchement de ces événements.
Pour leur étude, les chercheurs ont parcouru vingt années de données sismiques et celles concernant l’activité solaire, en particulier grâce au satellite Solar and Heliospheric Observatory (SOHO) de la NASA-ESA, et ils ont cherché des corrélations probables.
Le satellite SOHO, situé à environ 1,45 million de kilomètres de la Terre, surveille l’activité solaire, ce qui permet aux scientifiques de contrôler la quantité de matière solaire qui vient frapper la Terre.
En comparant les séismes répertoriés dans l’ISC-GEM Global Instrumental Earthquake Catalogue – où sont inscrits tous les événements historiques dans le monde – avec les données fournies par le satellite SOHO, les chercheurs ont remarqué que de puissants séismes se produisaient lorsque augmentaient le nombre et la vitesse des protons solaires arrivant sur Terre. Lorsque les protons en provenance du Soleil atteignent un pic, on observe également un pic dans le nombre de séismes d’une magnitude supérieure à M 5,6 pendant les 24 heures suivantes.
Après avoir remarqué une corrélation entre les émissions de protons solaires et les puissants séismes, les chercheurs ont ensuite proposé une explication avec un mécanisme baptisé « effet piézoélectrique inverse ».
La compression du quartz, roche courante dans la croûte terrestre, peut produire une impulsion électrique grâce à un processus appelé effet piézoélectrique. Les chercheurs pensent que de telles petites impulsions sont susceptibles de déstabiliser les failles proches de la rupture et déclencher des séismes.
Cette explication suppose que les anomalies électromagnétiques ne sont pas le résultat des séismes, mais en sont la cause. Lorsque les protons chargés positivement en provenance du Soleil frappent la bulle magnétique terrestre, ils génèrent des courants électromagnétiques qui se propagent à travers le monde. Les impulsions créées par ces courants continuent à déformer le quartz dans la croûte, ce qui finit par déclencher des tremblements de terre.
L’étude complète se trouve à cette adresse:
https://www.nature.com/articles/s41598-020-67860-3

Source: Nature Scientific Reports, The Watchers.

———————————————

Studies have been made about the possible influence of the Moon on volcanic eruptions. I have personally made a study about the possible correlation between atmospheric pressure and strombolian activity (see the abstract under the title of this blog). However, these studies have not brought any clear answers on the role played by these natural elements.

A new study by Italian researchers recently published in Nature Scientific Reports suggests that powerful eruptions on the Sun can trigger large earthquakes on Earth. In the paper, the authors analyzed 20 years of proton density and velocity data, as recorded by the SOHO satellite, and the worldwide seismicity in the corresponding period. They found a clear correlation between proton density and the occurrence of large earthquakes with magnitudes above M 5.6, with a time shift of one day.

The Sun is constantly bombarding the solar system with energy and particles in the form of the solar wind. Sometimes, eruptions on the Sun’s surface cause coronal mass ejections that hurtle through the solar system at extremely fast rates. The new study suggests that particles from such eruptions may be responsible for triggering groups of powerful earthquakes.

Scientists noted that some powerful earthquakes around the planet tend to occur in groups, not randomly. This indicates that there may be some global phenomenon triggering these worldwide events.

For their study, the researchers searched through 20 years of data on both earthquakes and solar activity, specifically from NASA-ESA’s Solar and Heliospheric Observatory (SOHO) satellite, and sought probable correlations.

SOHO, located about 1.45 million km from the Earth, monitors the Sun, which helps scientists track how much solar material strikes the Earth.

By comparing the ISC-GEM Global Instrumental Earthquake Catalogue – a historical record of powerful tremors – to SOHO data, the researchers noticed more strong earthquakes happened when the number and velocities of incoming solar protons increased. When protons from the Sun peaked, there was also a spike in earthquakes above M 5.6 for the next 24 hours.

After noticing there was a correlation between solar proton flux and strong earthquakes, the researchers went on to propose an explanation with a mechanism called “the reverse piezoelectric effect”.

Compressing quartz rock, something common in the Earth’s crust, can produce electrical pulse through a process called the piezoelectric effect. The researchers think that such small pulses could destabilize faults that are nearing rupture, triggering earthquakes

This new explanation suggests that electromagnetic anomalies are not the result of earthquakes, but cause them instead. As positively charged protons from the Sun hit the Earth’s magnetic bubble, they generate electromagnetic currents that propagate across the world. Pulses created by these currents go on to deform quartz in the crust, ultimately triggering earthquakes.

The complete study can be found at this address :

https://www.nature.com/articles/s41598-020-67860-3

Source : Nature Scientific Reports, The Watchers.

Vue d’une éruption solaire (Source: NASA)

Le Raikoke (Russie) provoque de beaux levers de soleil dans le Colorado // Raikoke Volcano (Russia) causes nice sunrises in Colorado

Au cours des dernières semaines, les habitants du Colorado ont pu observer de beaux levers de soleil pourprés tout à fait inhabituels. Leur cause se trouve à plusieurs milliers de kilomètres de cet Etat. Des chercheurs de l’Université de Boulder ont recueilli des preuves indiquant que le volcan Raikoke, qui est entré en éruption dans les îles Kouriles en juin dernier, a envoyé dans l’atmosphère un épais panache de cendres et de gaz volcaniques. Les satellites de la NASA ont observé l’éruption et envoyé des images impressionnantes du panache éruptif (voir ci-dessous). Grâce à un ballon à haute altitude, les chercheurs de Boulder ont pu détecter des aérosols – principalement du SO2, selon la NASA – qui ont diffusé la lumière du soleil. Combinés à la couche d’ozone qui absorbe la lumière, les aérosols peuvent apporter une belle nuance de violet aux couchers et aux levers de soleil.
L’éruption du Raikoke a été relativement modeste (voir mes notes des 22 et 26 juin 2019), mais suffisante pour affecter la majeure partie de l’hémisphère nord. Selon les chercheurs de l’Université de Boulder, le dernier phénomène similaire observé dans le Colorado s’est produit en 1991, lors de l’éruption du Pinatubo aux Philippines.
Source: The Denver Channel.

———————————–

Over the past few weeks, people in Colorado could notice unusually purple sunrises. The cause might be a few thousand miles away.Researchers at Boulder University have collected evidence that points to Raikoke, a volcano located on the Kuril Islands that erupted in June, sending a thick plume of ash and volcanic gases into the atmosphere. NASA satellites observed the eruption, capturing impressive images of the smoke plume (see below). Thanks to a high-altitude balloon, Boulder researchers could detect aerosols – mostly SO2, according to NASA – which scatter sunlight as they pass through the air.Combined with the ozone layer absorbing light, the aerosols can produce a shade of purple in sunrises and sunsets.
The eruption of Raikoke was relatively small (see my posts of 22 and 26 June 2019), but it was enough to impact most of the northern hemisphere. According to Boulder University researchers, the last similar phenomenon observed in Colorado happened in 1991, when Mount Pinatubo erupted in the Philippines.
Source: The Denver Channel.

L’éruption du Raikoke vue depuis l’espace (Source: NASA)

Le soleil, la lune et la faille de San Andreas

drapeau-francaisUne nouvelle étude conduite par des scientifiques de l’USGS a révélé que l’attraction gravitationnelle du Soleil et de la Lune, responsable du déclenchement des marées, peut également provoquer des types particuliers de séismes le long de la faille de San Andreas.
Il y a une dizaine d’années, les chercheurs ont découvert des séismes basse fréquence sur la portion de faille « Parkfield » en Californie où se libère de l’énergie tectonique entre la partie nord et la partie sud de ce secteur.
Les scientifiques ont examiné les données relatives à 81000 séismes du même type enregistrés entre 2008 et 2015 le long de la portion Parkfield, puis ils les ont comparées aux données représentant la marée bimensuelle, autrement dit un cycle de marée de deux semaines. La comparaison a révélé que les séismes se produisent le plus souvent pendant les périodes où la marée monte au rythme le plus rapide.
Il peut sembler surprenant de voir que la Lune, quand son attraction s’exerce dans le sens de glissement de la faille, intensifie et accélère ce dernier. Cela montre que la faille est extrêmement sensible, surtout quand on pense qu’il y a 30 kilomètres de roche qui la surmontent.
La force des marées dépend de la position relative du Soleil et la Lune l’un par rapport à l’autre. Les marées terrestres sont à leur maximum quand les deux astres sont alignés, et à leur minimum quand ils sont perpendiculaires. Certaines failles sont plus sensibles aux marées que d’autres, et leur réaction dépend aussi de leurs caractéristiques, telles que leur orientation ou leur proximité par rapport à la croûte de la planète.
La faille de San Andreas n’est pas orientée d’une manière qui la rendrait sensible à la force maximale des marées. Il est donc très étonnant qu’elle produise ce type de séismes basse fréquence. Ces derniers ont des magnitudes inférieures à  M1 et ils se situent entre 15 et 30 kilomètres sous la surface, à proximité du point de transition entre la croûte et le manteau. Ces séismes sont importants car ils sont susceptibles de fournir aux sismologues de précieuses informations sur la région la plus profonde de la faille qui n’est accessible d’aucune autre manière. Ils leur montrent aussi que la faille se poursuit en dessous de la zone où cessent les séismes classiques et typiques de la faille de San Andreas, à environ 10 ou 12 km de profondeur. Les séismes basse fréquence peuvent servir à mesurer l’amplitude du glissement en un point particulier de la partie profonde de la faille. Ils fournissent également aux sismologues un outil pour mesurer le temps de recharge de la faille en certains endroits. Ils représentent un moyen pour estimer directement la vitesse à laquelle les contraintes s’exercent sur la faille.

Source: Proceedings of the National Academy of Sciences of the United States of America (2016).

Il convient de noter qu’en 2002, un article publié dans la revue Geology abordait les effets des marées sur les microséismes des fonds marins. Au cours de l’été 1994, un petit réseau de sismographes installé au fond de l’océan a enregistré 402 événements microsismiques sur une période de deux mois, sur la caldeira sommitale du volcan sous-marin Axial, sur la dorsale Juan de Fuca. Le tremor harmonique a également été enregistrée sur tous les instruments, et les marées terrestres et océaniques ont été enregistrées sur des inclinomètres installés avec les sismomètres. Les microséismes ont montré une forte corrélation avec les marées basses, ce qui laisse supposer que les fracturations se produisent de préférence quand la « recharge » de l’océan est au minimum. Le tremor harmonique, qui est censé correspondre au mouvement du fluide à très haute température dans les fractures, a également connu une périodicité correspondant aux marées.

————————————–

drapeau-anglaisA new study led by USGS scientists revealed that the gravitational pull of Sun and Moon, responsible for inducing the tides, can also trigger special types of earthquakes on the San Andreas fault.

The researchers discovered the low-frequency earthquakes on the Parkfield section in California, some 10 years ago. The San Andreas fault releases tectonic energy from the northern to the southern portion at that location.

The scientists surveyed data from 81 000 earthquakes of the same type in the period between 2008 and 2015 along the Parkfield section and then compared them to the data representing the fortnightly tide, a two-week tidal cycle. The comparison revealed the tremors will probably occur during the time when the tide rose at the fastest pace, the waxing period.

It may seem very surprising to see that the Moon, when it’s pulling in the same direction that the fault is slipping, causes the fault to slip more and faster. What it shows is that the fault is extremely weak, given that there are 30 kilometres of rock sitting on top of it.

The strength of occurring tides depends on the relative location of the Sun and Moon in respect of each other. Earth tides are at their maximum when they are aligned and weakest when they are perpendicular. Some faults are more sensitive to the tides than others, and the response also depends on the faults’ characteristics, such as their orientation or the proximity to the planet’s crust.

The San Andreas fault is not oriented in a way which would make it susceptible to the full tidal strength, and that means it is quite amazing it produces the response tremors. Low-frequency earthquakes are of magnitudes lower than 1.0, located between 15 and 30 kilometres below the surface, close to where the crust transitions to the mantle. These tremors are important because they are capable of providing the scientists valuable information about the deeper parts of the fault that cannot be accessed in other way. They tell them that the fault continues down below where the regular or typical earthquakes stop on the San Andreas, about 10 or 12 km deep. The low-frequency earthquakes can be used as measurements of how much slip is happening at each little spot on the deep part of the fault. They also provide the seismologists with a tool to measure the recharge time of the fault along some locations. It is a way to directly estimate the rate at which stress is accumulating on the fault.

Source: Proceedings of the National Academy of Sciences of the United States of America (2016).

It should be noted that in 2002 an article released in Geology dealt with the tidal effects on seafloor microearthquakes. In the summer of 1994, a small ocean-bottom seismograph array located 402 microseismic events, over a period of two months, on the summit caldera of the Axial seamount on the Juan de Fuca Ridge. Harmonic tremor was also observed on all instruments, and Earth and ocean tides were recorded on tiltmeters installed within the seismometer packages. Microearthquakes showed a strong correlation with tidal lows, suggesting that faulting is occurring preferentially when ocean “loading” is at a minimum. The harmonic tremor, interpreted as the movement of superheated fluid in cracks, also had a tidal periodicity.

Parksfield

Vue (en rouge) de la section « Parkfield » de la faille de San Andreas (Source: USGS)

San Andreas 01

Dragon’s Back Ridge dans la Plaine de Carrizo (Photo: C. Grandpey)

San Andreas 04

Vue de la faille de San Andreas dans la plaine de Carrizo (Photo: C. Grandpey)

Eruptions solaires

Les éruptions les plus puissantes ne sont pas observées sur Terre. Certaines planètes du système solaire en connaissent de gigantesques à côté desquelles celles que nous observons sur nos volcans sont de la roupie de sansonnet. Le soleil connaît lui aussi de fantastiques éruptions. 2013 est une année faste car l’astre atteint le point culminant de son cycle d’activité de onze ans. C’est ainsi que le vendredi 25 octobre, le Soleil a connu une éruption solaire de classe X2.1.

Il faut savoir qu’il existe cinq classes éruptives pour définir l’activité du soleil: A, B, C, M et X. La classe A désigne les éruptions les plus faibles et la classe X les plus fortes, avec une puissance de 10 entre chaque ; par exemple, une éruption de type B est dix fois plus puissante qu’une éruption de type A.

L’éruption solaire du 25 octobre était la troisième du genre en l’espace de deux jours. Si la première avait été relativement moyenne, les deux suivantes ont été bien plus puissantes. Selon la NASA, la première éruption détectée le jeudi 24 octobre était de classe M9.4. Les éruptions appartenant à la classe M sont assez intenses et sont susceptibles de causer des perturbations au voisinage de la Terre.

L’éruption du mercredi 23 octobre avait été suivie d’une éjection de masse coronale (EMC) ; des particules solaires ont été projetées vers l’espace en direction de la Terre. Deux autres EMC s’étaient produites les jours précédentes mais sans causer de perturbations majeures.

Les éruptions des 24 et 25 octobre ont été les plus puissantes observées depuis plusieurs mois. L’éruption la plus intense du cycle solaire actuel s’était produite le 9 août 2011 et était de classe X6.9. La National Oceanic and Atmospheric Administration (NOAA) a indiqué que des perturbations radio ont été enregistrées dans la nuit du 27 au 28 octobre ; elles étaient de toute évidence provoquées par les EMC survenues en début de semaine.

Ces éruptions solaires donneront probablement lieu à l’apparition de belles aurores boréales.

 

En cliquant sur le lien ci-dessous, vous verrez les images d’une puissante éruption solaire filmée en septembre par un satellite et mises en ligne par la NASA :

http://www.francetvinfo.fr/sciences/video-les-images-d-une-puissante-eruption-solaire-compilees-par-la-nasa_444124.html