Nouvelle carte des planchers océaniques dans le monde // New map of ocean floors in the world

Une étude récente révèle qu’un satellite nouvelle génération a cartographié les fonds océaniques sur Terre avec un niveau de détail sans précédent.
La première année de mesures de la mission satellitaire SWOT (Surface Water and Ocean Topography), lancée en décembre 2022 et mise au point par la NASA aux États Unis et le Centre national d’études spatiales (CNES) en France, a permis d’étudier les frontières entre les continents et d’identifier des collines et des volcans sous-marins qui étaient trop petits pour être détectés jusqu’à présent par les satellites. Les chercheurs affirment que ces découvertes géologiques feront avancer la science, notamment dans le domaine de la tectonique. La nouvelle cartographie pourrait également fournir des informations inédites sur les courants océaniques, le transport des nutriments dans l’eau de mer et l’histoire géologique des océans sur Terre.

Grâce à une résolution de 8 kilomètres et un survol de 21 jours couvrant la majeure partie de la planète, une seule année de données fournie par la mission satellitaire SWOT offre une image plus claire et précise des fonds océaniques que 30 ans de données recueillies jusqu’à aujourd’hui par des navires et des satellites.
Pour repérer les reliefs sous-marins, SWOT mesure la hauteur de la surface de l’océan. Malgré les apparences, cette surface n’est pas plate. En effet, l’attraction gravitationnelle des structures sous-marines telles que les collines et les volcans fait que l’eau s’accumule et s’étale à leur sommet. Les variations de hauteur de la surface de la mer indiquent donc ce qui se trouve en profondeur.

Source: ESA

L’équipe scientifique s’est concentrée sur trois types de reliefs sous-marins : les collines abyssales, les petits volcans sous-marins et les marges continentales. Les collines abyssales – des dorsales parallèles de quelques centaines de mètres de hauteur – sont formées par les mouvements des plaques tectoniques. À l’aide des données SWOT, les chercheurs ont cartographié des collines de manière individuelle et ont repéré certains endroits où l’orientation des dorsales a changé, ce qui laisse supposer qu’à un moment donné de l’histoire de la Terre, la plaque tectonique qui les a formées a modifié son mouvement. Les chercheurs ne s’attendaient pas à voir autant de collines en si peu de temps.
L’étude s’est attardée sur les volcans sous-marins (seamounts en anglais), qui affectent les courants océaniques et jouent souvent le rôle de points chauds pour la biodiversité. Les anciens satellites avaient cartographié les volcans sous-marins les plus imposants, mais dans les données SWOT les scientifiques en ont repéré des milliers d’autres plus petits, et jusqu’alors inconnus, de moins de 1000 mètres de hauteur.
Les nouvelles données ont permis à l’équipe scientifique d’affiner les frontières tectoniques et de mieux définir les courants océaniques à proximité des zones côtières. Ces derniers sont intéressants car, avec les marées, ils apportent des nutriments et des sédiments terrestres à l’océan et influencent la biodiversité et l’écologie des zones côtières.
Pendant le reste de sa mission scientifique de trois ans, SWOT continuera de collecter des données sur les courants océaniques, de cartographier le fond des océans et d’évaluer la disponibilité en eau douce à l’échelle de la planète.
Source : Live Science via Yahoo News.

Nouvelle cartographie des océans (Source : NASA / SWOT)

—————————————————

A recent study reveals that a new satellite has mapped Earth’s ocean floors in unprecedented detail.

The first year of measurements from NASA’s Surface Water and Ocean Topography (SWOT) satellite mission, launched in December 2022 and developed by NASA and France’s Centre National D’Etudes Spatiales (CNES), enabled researchers to study the boundaries between continents and identify underwater hills and volcanoes that were too small to be detected by earlier satellites. The researchers say that these features will push scientific developments forward, including tectonic theories. The findings could also provide new information about ocean currents, nutrient transport in seawater and the geologic history of Earth’s oceans.

With an 8-kilometer resolution and 21-day path covering most of the planet, just one year of data from SWOT gives a clearer picture of the ocean floor than 30 years of data gathered by ships and older satellites.

To spot underwater features, SWOT measures the height of the ocean surface. Despite appearances, that surface is not flat. The gravitational pull of underwater structures like hills and volcanoes causes water to pile atop those structures in spread-out lumps. Changes in the sea surface height therefore point to what lies deep beneath the surface.

The scientific team focused on three types of underwater features: abyssal hills, small seamounts and continental margins. Abyssal hills – parallel ridges that are just a few hundred meters tall – are formed by the movements of tectonic plates. Using SWOT data, the researchers mapped individual hills and spotted a few places where the direction of the ridges changed, suggesting that at some point in Earth’s history, the tectonic plate that formed them changed the direction of its movement. The researchers were not expecting to see so many hills in so little time.

The study lingered on seamounts, or underwater volcanoes, which affect ocean currents and often act as hotspots for biodiversity. Older satellites have mapped large seamounts, but the scientists spotted thousands of smaller, previously unknown seamounts less than 1,000 meters tall in the SWOT data.

The new data helped the scientific team to further refine maps of tectonic boundaries and ocean currents near coastal areas. These features are interesting because the ocean currents and tides bring nutrients and sediments from the land to the ocean and influence the biodiversity and ecology in the coastal areas.

In the remainder of its three-year science mission, SWOT will continue to collect data on ocean currents, map the ocean floor and assess global freshwater availability throughout the year.

Source : Live Science via Yahoo News.

Les volcans sous-marins de l’Antarctique // Antarctic seamounts

Quand on parle de volcans en Antarctique, on pense immédiatement au Mont Erebus (3,794 m) sur l’Île de Ross, mais les fonds marins autour du continent blanc offrent également des édifices volcaniques très intéressants. De nouvelles cartes haute résolution des fonds marins de la région, à mi-chemin entre la Tasmanie et l’Antarctique, ont révélé une chaîne de volcans sous-marins – seamounts en anglais – dont les sommets peuvent influencer le comportement des courants océaniques qui circulent au-dessus d’eux.
Ces monts sous-marins sont situés à environ 4 000 mètres de profondeur et se trouvent en plein sur la trajectoire du Courant circumpolaire qui circule dans le sens des aiguilles d’une montre autour de l’Antarctique. Le courant agit comme une barrière qui isole le continent et permet de le maintenir sous sa forme glacée
Les scientifiques ont cartographié une zone où cette barrière semble présenter une fuite, ce qui permet à des tourbillons d’eau plus chaude d’atteindre les côtes de l’Antarctique et contribue peut-être à sa fonte et à l’élévation du niveau de la mer qui s’ensuit. Cette fuite est connue depuis longtemps mais les scientifiques espèrent que les nouvelles cartes pourront aider à comprendre son évolution à mesure que la température des océans augmente en raison du réchauffement climatique et que des quantités importantes d’eau de fonte pénètrent dans l’Océan Austral.
Les chercheurs ont collecté des données océaniques à l’intérieur du Courant circumpolaire depuis le navire de recherche australien Investigator. Ils ont également utilisé le satellite SWOT (Surface Water and Ocean Topography) de la NASA et du CNES, qui mesure la hauteur de la surface de l’océan depuis l’espace afin de savoir ce qui se trouve en dessous. Les mesures satellite ont révélé une chaîne de montagnes qui s’étend sur 20 000 kilomètres carrés dans une région à l’ouest de l’île Macquarie et de la dorsale tectoniquement active de Macquarie. La chaîne de montagnes comprend huit anciens monts sous-marins avec des sommets atteignant 1 500 mètres de hauteur et l’un d’eux possède un double cratère. Quatre parmi ces monts sous-marins n’ont jamais été étudiés auparavant.
Les monts sous-marins se sont formés au cours des 20 derniers millions d’années et ont probablement joué un rôle dans la formation des courants océaniques autour de l’Antarctique. Selon les auteurs de la nouvelle carte, « le Courant circumpolaire antarctique est sensible au relief des fonds marins et donc aux montagnes sur son chemin. Là où il rencontre des barrières comme des crêtes ou des monts sous-marins, des ‘ondulations’ apparaissent dans la circulation de l’eau. » Ces ondulations forment des tourbillons qui jouent un rôle majeur dans le transport de la chaleur et du carbone de la couche supérieure de l’océan vers les couches plus profondes. Ils représentent donc un tampon essentiel contre le réchauffement climatique.

Les chercheurs expliquent que la connaissance de la profondeur et du relief des fonds marins est cruciale pour quantifier l’influence des montagnes, collines et vallées sous-marines sur le Courant circumpolaire antarctique et évaluer la fuite de chaleur vers l’Antarctique. À terme, la cartographie de l’Océan Austral fournira des indices sur l’ampleur de la fonte des glaces en Antarctique et permettra de prévoir l’élévation du niveau de la mer qui en résultera.
Adapté d’un article du site space.com.

 

Modélisation d’un volcan sous-marin à double cratère découvert à l’ouest de l’île Macquarie (Source: FOCUS volyage/CSIRO).

————————————————–

When speaking about volcanoes in Antarctica, one immediately thinks about Mount Erebus (3,794 m) on Ross Island, but the seafloor of the region around the white continent also shows very interesting volcanic features. New high-resolution maps of the seafloor halfway between Tasmania and Antarctica have revealed a chain of underwater volcanoes – or seamounts – whose summits may influence the behaviour of ocean currents above.

These seamounts are located about 4,000 meters below the sea surface and directly in the path of the Antarctic Circumpolar Current which flows clockwise around Antarctica. The Current acts as a barrier that helps keep the icy continent frozen.

Scientists have mapped an area where this barrier appears to be leaking, enabling swirls of warm water to reach the shores of Antarctica and possibly contributing to its melting and to sea level rise.The leak has long been known but the scientists hope the new maps could help predict how the leak will evolve as oceans warm due to global warming and meltwater floods into the Southern Ocean.

The researchers collected ocean data inside the Circumpolar Current from aboard the Australian research vessel Investigator. They also used NASA’s and the French CNES Surface Water and Ocean Topography (SWOT) satellite, which measures the height of the ocean surface from space to know what lies beneath. The satellite measurements revealed a chain of mountains which spans 20,000 square kilometers of a region west of Macquarie Island and the tectonically active Macquarie Ridge. Actually, the chain of mountains includes eight ancient seamount with peaks up to 1,500 meters high and one with a double vent. Four of the seamounts have never been studied before.

The seamounts formed within the last 20 million years and likely play a role in shaping ocean currents around Antarctica. According to the authors of the new map, « the Antarctic Circumpolar Current ‘feels’ the seafloor and the mountains in its path, and where it encounters barriers like ridges or seamounts, ‘wiggles’ are created in the water flow. » These wiggles form eddies that play a major role in transporting heat and carbon from the upper ocean to deeper layers, a critical buffer against global warming.

The researchers explain that knowledge of the depth and shape of the sea floor is crucial to quantify the influence of undersea mountains, hills and valleys on the Antarctic Circumpolar Current and the leaking of heat toward Antarctica. Ultimately, mapping the Southern Ocean will deliver clues about the extent of ice melt in Antarctica and help predict the resulting rise in sea levels.

Adapted from an article on the website space.com.

Découverte de 19 000 nouveaux volcans sous-marins // Discovery of 19,000 new seamounts

Comme je l’ai écrit à plusieurs reprises sur ce blog, nous connaissons la surface de Mars, la Lune ou Venus, et même les lunes de Jupiter, mieux que le fond de nos océans. En conséquence, avec la cartographie de seulement un quart du plancher océanique à l’aide du sonar, nous sommes incapables de savoir combien de volcans sous-marins existent sur notre propre planète ! C’est par ailleurs un vrai problème car la plupart des séismes les plus dévastateurs se déclenchent dans les zones de subduction, en particulier les fosses océaniques. L’envoi d’instruments au plus profond des abysses pourrait permettre d’observer, comprendre – sans parler de prévoir – ce qui s’y passe.
Peut-être allons nous bientôt en savoir plus. Une équipe d’océanographes de la Scripps Institution of Oceanography, en collaboration avec des chercheurs de l’Université nationale de Chungnam et de l’Université d’Hawaii, a réussi à cartographier 19 000 volcans sous-marins jusqu’alors inconnus, grâce aux données satellitaires radar. Armée de données provenant de satellites radar à haute résolution, dont le CryoSat-2 de l’Agence Spatiale Européenne et le SARAL des agences spatiales indienne et française, l’équipe scientifique a pu détecter ces nouveaux édifices sous-marins.Les résultats de ces observations ont été publiés dans la revue Earth and Space Science. Même si elles n’apportent pas un nouvel éclairage sur l’activité sismique dans les profondeurs des océans, ces découvertes sont essentielles pour améliorer notre compréhension des fonds marins, améliorer la modélisation des courants océaniques et permettre une navigation sous-marine plus sûre.
Les chercheurs ont utilisé les données satellitaires radar pour mesurer l’altitude de la surface de la mer qui change en raison des variations de l’attraction gravitationnelle liée à la topographie des fonds marins. Cela a permis de détecter et de cartographier 19 325 volcans sous-marins jusque-là inconnus. Leurs découvertes ont étoffé le catalogue précédemment publié qui comportait 24 643 édifices. Il en présente désormais 43 454.
Dans leur étude, les scientifiques expliquent que les volcans sous-marins sont extrêmement importants pour créer des modèles océaniques et étudier les courants océaniques dans le monde. Comme indiqué plus haut, jusqu’à présent seul un quart du plancher océanique avait été cartographié, ce qui représentait une lacune importante dans notre connaissance de l’emplacement et du nombre de volcans sous-marins. Ce manque d’informations a provoqué des accidents, comme ceux impliquant des sous-marins américains. En 2005, l’USS San Francisco à propulsion nucléaire est entré en collision à grande vitesse avec un volcan sous-marin, tuant un membre d’équipage et blessant la plupart des militaires à bord. Un accident semblable s’est produit en 2021 lorsque l’USS Connecticut a heurté un volcan sous-marin dans la Mer de Chine méridionale, endommageant son réseau de sonars.
En plus de la création de modèles de courants océaniques plus précis, la cartographie des fonds marins contribue aux efforts d’exploitation minière à grande profondeur et fournit des données précieuses aux géologues qui étudient les plaques tectoniques et le champ géomagnétique terrestre. De plus, les volcans sous-marins servent d’habitats à une importante vie marine.
Source : The Watchers, Science.

———————————————

As I have put it several times on this blog, we know the surface of Mars, the Moon or Venus, and even the moons of Jupiter, better than the bottom of our oceans. As a consequance, with only one-quarter of the sea floor mapped with sonar, it is impossible to know how many seamounts exist. This is also a real problem beacuse most of the most devastating earthquakes are triggered in subduction zones including ocean trenches. Sending instruments deep into the abysses could help understand , let alone predict, what is happening down there.

A team of oceanographers at the Scripps Institution of Oceanography, collaborating with researchers from Chungnam National University and the University of Hawaii, have successfully mapped 19 000 previously unknown undersea volcanoes, or seamounts, using radar satellite data. Now, armed with data from high-resolution radar satellites, including the European Space Agency’s CryoSat-2 and SARAL from the Indian and French space agencies, the team could detect the new seamounts Their findings have been published in the journal Earth and Space Science. Even if it does not bring a new light on seismic activity in the depths of the oceans, this breakthrough is crucial in enhancing our understanding of the ocean floor, improving ocean current modeling, and ensuring safer submarine navigation.

The researchers utilized radar satellite data to measure the altitude of the sea surface, which changes due to variations in gravitational pull related to seafloor topography. This method allowed scientists to detect and map the 19 325 previously unknown seamounts. The discovery expanded a previously published catalog having 24 643 seamounts to a total of 43 454.

In their paper, the team noted that seamounts are crucial in creating ocean models and studying the flow of ocean water around the world. Previously, only one-fourth of the ocean floor had been mapped, leaving a significant gap in our knowledge of the location and number of seamounts. This lack of information has caused accidents, such as the two incidents involving U.S. submarines colliding with seamounts. In 2005, the nuclear-powered USS San Francisco collided with an underwater volcano, or seamount, at top speed, killing a crew member and injuring most aboard. It happened again in 2021 when the USS Connecticut struck a seamount in the South China Sea, damaging its sonar array.

Apart from helping to create more accurate ocean current models, mapping the ocean floor also assists in sea-floor mining efforts and provides valuable data for geologists studying the planet’s tectonic plates and geomagnetic field. Additionally, seamounts serve as habitats for a diverse range of marine life.

Source : The Watchers, Science.

Image bathymétrique de la Patton Seamount Chain dans le Golfe d’Alaska (Source : NOAA)

Les volcans des Samoa américaines // Volcanoes of American Samoa

Le 21 août 2022, l’Observatoire des Volcans d’Hawaii (HVO) m’a envoyé un message indiquant une hausse de la sismicité depuis fin juillet dans les îles Manuʻa des Samoa américaines. Les Samoa américaines sont un territoire non incorporé des États-Unis, situé dans l’océan Pacifique Sud, au sud-est de l’État indépendant des Samoa (voir carte ci-dessous). Dans un article récent de la série Volcano Watch, le HVO a donné plus de détails sur la sismicité et le volcanisme dans cette partie du monde.
S’agissant des volcans, le Ta’ū s’est manifesté par un essaim sismique qui a été ressenti dans toutes les îles Manuʻa (îles Ofu-Olosega et Ta’ū) entre fin juillet et début septembre 2022. Au plus fort de la crise, on a détecté jusqu’à 30 à 40 événements par heure. La plupart des secousses étaient trop faibles pour être ressenties par la population, mais certains jours, des dizaines ont été notées par les habitants des îles Manuʻa. Le HVO a alors rapidement déployé du matériel de surveillance et du personnel pour évaluer la situation et faire face à d’éventuels dangers.
Les Samoa américaines comprennent les îles les plus à l’est de l’archipel des Samoa dans le Pacifique sud. Il s’agit notamment des îles de Tutuila (là où se concentre la population) et des îles Manuʻa à une centaine de kilomètres à l’est. Ces îles sont les sommets de volcans boucliers, qui se trouvent pour la plupart à 4 500 m sous la surface de l’océan. D’autres volcans créés par le point chaud samoan sont encore complètement sous l’océan, comme le volcan sous-marin Vailuluʻu situé à une quarantaine de kilomètres à l’est de Ta’ū.
Bien qu’ils soient proches de la célèbre « Ceinture de Feu » du Pacifique, les volcans des îles Samoa ont été créés par un point chaud de la même manière que l’archipel hawaiien, volcanisme qui a tendance à produire des volcans boucliers.
A proximité des Samoa, les volcans de l’archipel des Tonga sont d’un type différent lié au processus de subduction dans la Fosse des Tonga. En conséquence, une éruption comme celle de l’Hunga Tonga-Hunga Ha’apai, en janvier 2022, a peu de chances de se produire dans les Samoa.
Le Vailuluʻu est le volcan qui a montré l’activité la plus récente dans les Samoa américaines, avec trois éruptions depuis les années 1970. Ces éruptions se sont produites à près de 600 m sous la surface de l’océan et ont généré des coulées de lave. Il est difficile de confirmer les éruptions du Vailuluʻu sans une bonne cartographie des fonds océaniques.
La plupart des éruptions aux Samoa américaines produisent des coulées de lave relativement lentes, comme à Hawaii. Plus rares sont les explosions où le magma et l’eau interagissent. Il existe toutefois des preuves, dans le passé, de petites éruptions explosives qui ont projeté des bombes à quelques centaines de mètres des bouches éruptives. Ces éruptions se produisent lorsque le magma entre en contact avec des eaux souterraines peu profondes ou près de la côte dans un environnement marin peu profond.
Une telle éruption explosive s’est produite à environ 3 km au large à l’est d’Ofu-Olosega en 1866. Le 7 septembre 1866, les habitants des îles Manuʻa ont senti la terre trembler. Cinq jours plus tard, une éruption a commencé et s’est poursuivie pendant au moins 2 mois. La partie la plus spectaculaire de l’activité volcanique a été observée au moment où il y avait tellement de cendre que les habitants de l’île de Taʻū ne pouvaient pas voir Ofu-Olosega. Le cône qui se trouve sur le site de l’éruption reste sous la surface de l’océan, mais au moment de l’éruption, les cendres volcaniques ont atteint 600 m d’altitude. Des séismes ont été ressentis tout au long des 2 mois de l’éruption. Dans le même temps, l’océan a pris parfois une teinte jaune à cause du soufre et des poissons morts se sont échoués sur le rivage.
Tutuila est l’île la plus occidentale et la plus peuplée des Samoa américaines. Elle aussi a été impactée par des éruptions. Les cendres volcaniques déposées sur le sol indiquent que les gens ont probablement été témoins d’éruptions sur Tutuila il y a environ 1 400 à 1 700 ans. Des coulées de lave d’apparence juvénile sur Tutuila, Ofu-Olosega et Taʻū semblent indiquer qu’il y a eu d’autres éruptions au cours des 10 000 dernières années.
Depuis septembre 2022 (voir ma note du 2 septembre), il y a peu d’activité sismique sous l’île de Taʻū.
Source : USGS/HVO.

——————————————-

On August 21st, 2022, the Hawaiian Volcano Observatory (HVO) sent me a message about an increase in seismisity since late July in the Manuʻa Islands of American Samoa. American Samoa is an unincorporated territory of the United States located in the South Pacific Ocean, southeast of the independent state of Samoa (see map below). In a revent Volcano Watch article, HVO has given more details about seismicity and volcanism in that part of the world.

As far as volcanoes are concerned, Ta‘ū experienced unrest in the form of an earthquake swarm that was felt throughout the Manuʻa Islands (Ofu-Olosega and Ta‘ū Islands) from late July through early September 2022. At its peak, as many as 30-40 earthquakes were detected per hour. Most earthquakes were too small to be felt, but some days dozens were noted by residents of the Manuʻa Islands. In response, HVO rapidly deployed monitoring equipment and staff to assess the situation and help respond to any future hazards.

American Samoa comprises the easternmost islands of the Samoan archipelago in the south Pacific. These include the islands of Tutuila (the population center) and the Manuʻa Islands about 100 km to the east. These islands are the tops of shield volcanoes, which are mostly submerged to 4,500 m beneath the ocean surface. Other volcanoes created by the Samoan hot spot are still completely below the ocean, such as the Vailuluʻu seamount located about 40 km east of Ta‘ū.

Despite being near the Pacific’s famed “Ring of Fire,” the volcanoes of the Samoan Islands were created by a hot spot in much the same way as the Hawaiian Islands. This type of volcanism tends to produce shield volcanoes.

The volcanoes in nearby Tonga are of a different type related to subduction at the Tonga Trench, and consequently, an eruption like the one that occurred at Hunga Tonga–Hunga Ha’apai, in January 2022, is extremely unlikely in the Samoan Islands.

Vailuluʻu is the most recently active volcano in American Samoa, with three eruptions since the 1970s. These eruptions occurred nearly 600 m below the ocean surface and produced lava flows. It is difficult to confirm Vailuluʻu eruptions without ship-based ocean floor mapping.

Most eruptions in American Samoa produce relatively slow moving lava flows that are similar to eruptions in Hawaii. Rarer are small explosions where magma and water interact. There is evidence, in the past, of small explosive eruptions that threw out bombs a few hundred meters away from their volcanic vents. These types of eruptions occur when magma comes into contact with shallow groundwater or near the coast in the shallow marine environment.

Such an eruption happened about 3 km offshore to the east of Ofu-Olosega in 1866. On September 7th, 1866, residents of the Manuʻa Islands began feeling earthquakes. Five days later, an eruption started and continued for at least 2 months. The most dramatic part of the volcanic activity occurred when there was so much volcanic ash that people on Taʻū Island could not see Ofu-Olosega. The cone at the site of the eruption remains submerged below the ocean, but at the time of the eruption, volcanic ash reached 600 m above sea level. Earthquakes were felt throughout the 2 months of the event, and the surrounding ocean was agitated with an occasional sulfur yellow hue and dead fish washing ashore.

Tutuila is the westernmost, and most populous, island of American Samoa. It too has been impacted by eruptions. Volcanic ash deposited above soils indicate that people likely witnessed eruptions on Tutuila about 1,400-1,700 years ago. Youthful-looking lava flows on Tutuila, Ofu-Olosega, and Taʻū suggest there have been other eruptions within the past 10,000 years.

Since September 2022 (see my post of September 2nd), there has been little earthquake activity beneath Taʻū Island.

Source: USGS / HVO.

 

Source: USGS

 

Carte bathymétrique des Samoa américaines. Le point chaud samoan a créé des volcans le long de deux lignes, Vai au nord et Malu au sud. La plupart des volcans restant sous le niveau de la mer. On pense que le point chaud samoan se trouve près du volcan sous-marin le plus à l’est de Vailuluʻu. (Source: NOAA)