Le cratère d’impact de Bosumtwi (Ghana) // The Bosumtwi impact crater (Ghana)

Quand on parle des cratères, on pense surtout à ceux des volcans, actifs de préférence, mais il ne faudrait pas oublier les cratères d’impact laissés par les météorites. La surface de la Lune est criblée de tels cratères, mais il en existe quelque 190 à la surface de la Terre. À une trentaine de kilomètres de mon domicile se trouve le site de l’astroblème de Rochechouart-Chassenon, un ensemble de marques laissées près des villages de Rochechouart et Chassenon (Haute-Vienne et Charente) par l’impact d’un astéroïde tombé il y a 206,9 ± 0,3 millions d’années.

Les cratères d’impact se forment lorsqu’un astéroïde ou une comète percute la Terre à très grande vitesse. Cela laisse une cavité circulaire à la surface de notre planète. La surface de la Lune est criblée de cratères d’impact, tout comme des planètes comme Mercure, Mars et Vénus. Sur Terre, de tels impacts ont influencé l’évolution de la vie et ont même fourni de précieuses ressources minérales et énergétiques. Cependant, très peu de cratères d’impact terrestres sont visibles aujourd’hui en raison de divers processus qui les cachent ou les effacent. Comme à Rochechouart, la plupart des cratères d’impact connus sur Terre sont enfouis sous des sédiments ou ont été profondément érodés. Ils ne conservent donc plus leur forme initiale comme à Meteor Crater dans l’Arizona..

Meteor Crater (Photo : C. Grandpey)

Au Ghana, le cratère d’impact de Bosumtwi est différent. Il est bien conservé. Son bassin quasi circulaire, rempli par un lac, est entouré d’un rebord proéminent qui s’élève au-dessus de la surface du lac et d’un plateau circulaire extérieur.

 

Vue du lac Bosumtwi (Crédit photo : Wikipedia)

Une étude de 2019 a conclu que les activités illégales des mineurs menacent la pérennité du cratère. Des chercheurs sur le terrain ont découvert que les caractéristiques du cratère d’impact de Bosumtwi peuvent être considérées comme un type particulier de cratère d’impact appelé ‘cratère-rempart’. Ce type de cratère est fréquent sur les planètes Mars et Vénus et se trouve aussi sur les corps recouverts de glace du système solaire externe. Pour de futures études, le cratère d’impact de Bosumtwi pourrait permettre de comprendre la formation de ces cratères sur Mars et Vénus.
Au Ghana, le cratère d’impact de Bosumtwi se trouve dans la ceinture aurifère Ashanti, riche en minéraux. Il abrite le seul lac intérieur naturel du pays. C’est l’un des 190 sites de cratères d’impact reconnus dans le monde, et l’un des 20 qui existent sur le continent africain. Son lac est l’un des six lacs météoritiques au monde, reconnus pour leur valeur scientifique exceptionnelle.

Âgé de près de 1,07 million d’années, le cratère d’impact de Bosumtwi offre d’excellentes opportunités pour étudier les processus d’impact, l’histoire du climat et l’évolution planétaire. Au-delà de son importance scientifique, le cratère revêt une importance culturelle pour le peuple Ashanti du Ghana. Le lac en son centre est un site sacré et un repère spirituel. Le paysage créé par le cratère favorise également l’écotourisme et les moyens de subsistance locaux; il contribue ainsi au développement économique du Ghana.
En 2025, des scientifiques ont découvert, grâce à des travaux de terrain et à l’analyse de données satellitaires, que l’exploitation minière artisanale illégale, principalement l’orpaillage, est répandue dans la région et menace le cratère. L’utilisation de produits chimiques toxiques comme le mercure et le cyanure, ainsi que des pratiques telles que le dragage des rivières, causent de graves dommages environnementaux. Les activités des mineurs se sont intensifiées au cours des dix dernières années. Si rien n’est fait, elles pourraient causer des dégâts irréversibles au cratère et affecter profondément sa valeur scientifique, culturelle et économique. La perte de cette merveille géologique représenterait non seulement une tragédie nationale pour le Ghana, mais aussi un coup dur pour le patrimoine scientifique mondial.

 

Carte montrant le cratère d’impact de Bosumtwi et les sites d’exploitation minière (Crédit photo :David Baratoux via the Conversation)

Des mesures doivent donc être prises très rapidement. Cela suppose une meilleure surveillance satellite (suivi de l’exploitation minière illégale, de la déforestation et des changements environnementaux) grâce à l’imagerie optique (Sentinel-2, Landsat, PlanetScope). Ces outils permettent de détecter la déforestation, d’identifier les puits de mines et le ruissellement des sédiments, et d’analyser les changements au fil du temps. Une application plus stricte des interdictions d’exploitation minière contribuera à préserver le cratère d’impact de Bosumtwi pour les futures générations de scientifiques, et pour les communautés locales qui dépendent de ses ressources.
Source : The Conversation.

———————————————-

When we talk about craters, we mostly think of those of volcanoes, preferably active ones, but we should not forget the impact craters left by meteorites. The surface of the Moon is riddled with such craters, but there are some 190 on the surface of the Earth. About thirty kilometers from my home is the site of the Rochechouart-Chassenon astrobleme, a group of marks left near the villages of Rochechouart and Chassenon (Haute-Vienne and Charente) by the impact of an asteroid that fell 206.9 ± 0.3 million years ago.

Impact craters are formed when an asteroid or comet strikes the Earth at a very high velocity. This leaves an excavated circular hole on the Earth’s surface. The moon is covered with them, as are planets like Mercury, Mars and Venus. On Earth, impacts have influenced the evolution of life and even provided valuable mineral and energy resources. However, very few of the impact craters on Earth are visible because of various processes that obscure or erase them. Like at Rochechouart, most of the recognized impact craters on Earth are buried under sediments or have been deeply eroded. That means they no longer preserve their initial forms like at Meteor Crater (Arizona).

In Ghana, the Bosumtwi impact crater is different. It is well preserved. Its well-defined, near-circular basin, filled by a lake, is surrounded by a prominent crater rim that rises above the surface of the lake and an outer circular plateau.

A 2019 study concluded that the activities of illegal miners are a threat to the sustainability of the crater. On-the-field researchers also discovered that the features of the Bosumtwi impact crater can be considered as a terrestrial representation for a special type of impact crater known as rampart craters. These are common on the planets Mars and Venus and are found on icy bodies of the outer solar system. For future studies, the Bosumtwi impact crater can be used to help understand how rampart craters form on Mars and Venus. S

The Bosumtwi impact crater is in Ghana’s mineral-rich Ashanti gold belt. It is the location of the only natural inland lake in Ghana. It is one of only 190 confirmed impact crater sites worldwide, one of only 20 on the African continent. Its lake is one of six meteoritic lakes in the world, recognized for their outstanding scientific value.

At almost 1.07 million years old, the crater offers great opportunities for studying impact processes, climate history and planetary evolution. Beyond its scientific importance, the crater holds cultural significance for the Ashanti people of Ghana. The lake at its centre serves as a sacred site and spiritual landmark. The crater’s breathtaking landscape also supports eco-tourism and local livelihoods, contributing to Ghana’s economic development.

In 2025, scientists have discovered through field work and satellite data analysis that illegal artisanal mining, mostly gold mining, is prevalent in the area and threatening the crater. The use of toxic chemicals such as mercury and cyanide, and practices such as river dredging, cause severe environmental harm. The miners’ activities have become more prevalent over the course of less than 10 years. If unchecked, it could lead to irreversible damage to the crater and deeply affect the crater’s scientific, cultural and economic value. The loss of this rare geological wonder would represent not just a national tragedy for Ghana, but a blow to global scientific heritage.

Immediate action is required. This includes enhanced satellite monitoring (tracking illegal mining, deforestation and environmental changes) using optical imagery (such as Sentinel-2, Landsat, PlanetScope). These tools can detect forest loss, identify mining pits and sediment runoff, and analyse changes over time. Stricter enforcement of mining bans will help preserve the Bosumtwi impact crater for future generations of scientists and local communities who depend on its resources.

Source : The Conversation.

L’apprentissage automatique au service des sismologues // Machine learning to help seismologists

Des algorithmes d’apprentissage automatique appliqués aux données de formes d’ondes de 2008 à 2022 ont révélé 86 276 séismes sous la caldeira de Yellowstone, soit environ dix fois plus que les données précédentes obtenues avec des techniques traditionnelles. Le catalogue révisé, basé sur 15 années de données de formes d’ondes, a été publié dans Science Advances le 18 juillet 2025. Il a été réactualisé par des chercheurs de la Western University, de Universidad Industrial de Santander et de l’U.S.G.S.
Ce nouveau catalogue a été rendu possible grâce à l’application de techniques avancées d’apprentissage automatique et d’un modèle de vitesse 3D spécifique à chaque région. Il montre dans quelle mesure l’intelligence artificielle peut améliorer radicalement la détection et la caractérisation de l’activité microsismique dans les régions volcaniques complexes.
Avant cette nouvelle approche, la détection des séismes reposait en grande partie sur des inspections manuelles et des algorithmes traditionnels, ce qui limitait l’échelle et la granularité des données sismiques. Pour surmonter ces obstacles, les chercheurs ont entraîné un modèle d’IA distinct pour chaque station sismique du réseau de Yellowstone.
Cette approche a permis une définition précise de la magnitude de chaque événement, même lors de périodes de chevauchement d’essaims. Lors de tests de validation, le modèle a récupéré 83 % des séismes précédemment documentés et identifié 855 nouveaux événements sur une période de seulement 10 jours, dont plus de 99 % ont été confirmés comme étant de véritables séismes.
Plus de la moitié des séismes se sont produits en essaims, généralement sans secousse principale dominante. L’analyse a révélé que les essaims étaient probablement déclenchés par une combinaison de lente migration des fluides et de variations soudaines de pression dans les systèmes hydrothermaux.
Le nouveau modèle réactualisé a permis de localiser avec précision les séismes et d’estimer leur magnitude en tenant compte des hétérogénéités du sous-sol qui affectent la propagation des ondes sismiques. Les chercheurs pensent que ces résultats pourraient contribuer à améliorer l’évaluation des risques dans d’autres régions volcaniques. Une meilleure imagerie sismique permet d’éviter plus facilement les zones où les mouvements de fluides déclenchent souvent des séismes.
Source : The Watchers.

Photo: C.Grandpey

——————————————————

Machine learning algorithms applied to waveform data from 2008 to 2022 have revealed 86 276 earthquakes beneath the Yellowstone caldera, which is about 10 times more than previously recorded. The revised catalogue, based on 15 years of waveform data, was published in Science Advances on July 18, 2025. It was created by researchers from Western University, Universidad Industrial de Santander, and the U.S.G.S.

The new catalogue was made possible through the application of advanced machine learning techniques and a region-specific 3D velocity model. It demonstrates how artificial intelligence can radically improve detection rates and characterization of microseismic activity in complex volcanic regions.

Prior to this new approach, earthquake detection relied heavily on manual inspections and traditional algorithms, limiting the scale and granularity of the seismic record. To overcome these limitations, researchers trained a separate AI model for each seismic station in the Yellowstone network.

This approach allowed accurate magnitude assignment, even during periods of overlapping swarm events. In validation tests, the model recovered 83% of previously documented earthquakes and identified 855 new events over just a 10-day window, with over 99% of those confirmed as real earthquakes.

More than half of the earthquakes were found to occur in swarms, typically lacking a dominant mainshock. The analysis revealed that swarms were likely triggered by a combination of slow fluid migration and sudden pressure changes in hydrothermal systems.

This model helped accurately locate earthquakes and estimate magnitudes by accounting for heterogeneities in the subsurface that affect seismic wave propagation. Researchers say the findings could help improve hazard assessments in other volcanic regions. Better seismic imaging makes it easier to avoid areas where fluid movement often triggers earthquakes.

Source : The Watchers.

L’Ol Doinyo Lengaï (Tanzanie) s’enfonce dans le sol // Ol Doinyo Lengai (Tanzania) is sinking into the ground

Il y a quelques jours (le 4 août 2024), j’ai diffusé une note donnant les dernières nouvelles de l’Ol Doinyo Lengaï, le seul volcan actif au monde à émettre des carbonatites.
Un article publié sur le site Live Science nous informe que le Lengaï s’enfonce peu à peu dans le sol depuis 10 ans, et que la cause pourrait être la perte de volume d’un réservoir qui se trouverait juste sous l’un des deux cratères. C’est la conclusion d’une nouvelle étude publiée le 8 juin 2024 dans la revue Geophysical Research Letters. Les chercheurs ont utilisé les données de deux systèmes satellitaires, Sentinel-1 et Cosmo-SkyMed, pour élaborer des cartes montrant l’évolution au fil du temps du sol autour de l’Ol Doinyo Lengai.
La nouvelle étude révèle que le sol autour du sommet du Lengai s’est affaissé à raison de 3,6 centimètres par an entre 2013 et 2023. Cela signifie que le volcan qui culmine officiellement à 2 962 mètres d’altitude a perdu environ 36 centimètres au cours de la période couverte par l’étude. Les cartes montrent qu’une zone circulaire autour du cratère nord du volcan « s’éloigne du satellite, de manière constante au fil du temps. »

Illustration du système d’alimentation sous le Lengaï, extraite de l’étude mentionnée ci-dessus.

Comme je l’ai écrit précédemment, l’Ol Doinyo Lengai a connu un épisode explosif en septembre 2007. Cette activité s’est poursuivie jusqu’au printemps 2008, après quoi le volcan a recommencé à produire des coulées de lave. Des études antérieures avaient déjà signalé que le cratère qui venait d’exploser était probablement en train de s’affaisser. La nouvelle étude confirme que les pentes supérieures du cratère s’affaissent depuis 2013. Il convient de noter que les chercheurs n’ont pas étudié les données entre 2008 et 2013. Selon les auteurs de la dernière étude, la cause probable de cet affaissement est un réservoir de magma dont la taille est en train de se réduire, à un millier de mètres sous le volcan.
On peut lire dans la dernière étude qu’« aucune recherche ne s’est intéressée à la géométrie et aux caractéristiques du système d’alimentation magmatique peu profond sous l’Ol Doinyo Lengai. » Il se peut que ce réservoir soit connecté à un réservoir plus profond et plus volumineux à 3 000 mètres ou plus sous le volcan.
Les chercheurs expliquent que la surveillance de l’affaissement de l’Ol Doinyo Lengai est importante pour prévoir les éruptions. Ils ajoutent qu’il existe également une fissure remplie de lave, d’une centaine de mètres de longueur, le long du bord ouest du volcan. « Elle pourrait s’allonger encore davantage avec les éruptions et le processus d’affaissement du Lengai. Selon Francis Balland, cette fracture présente une longueur d’une centaine de mètres, une largeur d’environ 5 mètres et des parois verticales de 5 à 10 mètres de hauteur.
Source :Live Science via Yahoo News.

Voici une bonne vidéo qui montre parfaitement les caractéristiques physiques de la carbonatite, ainsi que sa fluidité :

https://youtu.be/qputaVyn7TE

Débordement d’un lac de lave au sommet du Lengaï (Photo: C. Grandpey)

————————————————————

A few days ago August 4th, 2024), I wrote a post giving the latest news of Ol Doinyo Lengai, the only active volcano in the world to erupt carbonatite lava.

An artiicle published on the Live Science website informs us that this volcano has been steadily sinking into the ground for the past 10 years, and the cause could be a deflating reservoir directly beneath one of the volcano’s two craters. This is the conclusion of a new study published on June 8th, 2024 in the journal Geophysical Research Letters. It used data from two satellite systems, Sentinel-1 and Cosmo-SkyMed, to produce maps showing changes over time in the ground around Ol Doinyo Lengai.

The new research reveals that the ground around the summit of Ol Doinyo Lengai subsided at a rate of 3.6 centimeters per year between 2013 and 2023. This means the 2,962-meter-tall volcano lost about 36 centimeters in the timeframe of the study.

The maps indicate that a circular patch of ground around the volcano’s northern crater is « moving away from the satellite with a steady rate of displacement over time.

As I put it before, Ol Doinyo Lengai showed explosive activity in September 2007. This activity continued through spring 2008, after which the volcano resumed producing lava flows. Previous research suggested the newly-blasted crater may be subsiding, and the new study confirms that the upper slopes of this crater have been sinking since 2013. It should be noted the researchers did not look at data between 2008 and 2013. According to the authors of the latest study, the likely cause for this subsidence is a deflating magma reservoir located about 1,000 meters beneath the volcano.

One can read in the study that « the geometry and characteristics of the shallow magma plumbing system below Ol Doinyo Lengai remain elusive. » This reservoir may be connected to a bigger magma storage area 3,000 meters or deeper beneath the volcano.

The researchers explain that monitoring the subsidence of Ol Doinyo Lengai is important to forecast eruptions. There is also a growing 100-meter-long lava-filled fissure along the western rim of the volcano that « could further elongate as Ol Doinyo Lengai continues to erupt and subside, » according to the study. Francis Balland has informed me that this fissure is about 100 meters long, 5 meters wide, with 5-10-meter-high walls.

Source : Live Science via Yahoo News.

Here is a good video that perfectly shows the physical characteristivs of carbonatite lava, as well as its fluidity :

https://youtu.be/qputaVyn7TE

L’éruption du Hunga Tonga-Hunga Ha’apai a perturbé l’ionosphère // The Hunga Tonga-Hunga Ha’apai eruption disturbed the ionosphere

L’éruption du Hunga Tonga-Hunga Ha’apai, le volcan sous-marin des Tonga, en janvier 2022, est exceptionnelle et représente un trésor pour les scientifiques qui ne cessent de faire de nouvelles découvertes.Ils ont déjà publié une analyse qui montre que cette éruption a généré le plus haut panache volcanique de tous les temps (57 km), avec pénétration de la stratopause, la limite supérieure de la stratosphère.
Aujourd’hui, une équipe internationale de chercheurs a découvert que l’éruption a perturbé les signaux satellites à grande échelle. Les scientifiques ont utilisé des observations ionosphériques satellitaires et terrestres pour montrer qu’une onde de pression atmosphérique déclenchée par une éruption volcanique est capable de produire une bulle de plasma équatoriale (EPB) dans l’ionosphère, avec de fortes perturbations causées aux communications par satellite. Les résultats de ces travaux ont été publiés dans la revue Scientific Reports.
L’ionosphère s’étend d’une altitude d’environ 80 à 1 000 km. C’est la région de la haute atmosphère terrestre où les molécules et les atomes sont ionisés par le rayonnement solaire, ce qui donne naissance à des ions chargés positivement. La zone avec la plus forte concentration de particules ionisées, la région F – 150 à 800 km de la surface de la Terre – joue un rôle crucial dans les communications radio longue distance car elle réfléchit et réfracte les ondes radio utilisées par les systèmes de suivi par satellite et GPS vers la surface de la Terre. Cependant, des trous peuvent se former dans cette région F, créant une structure en forme de bulle appelée EPB (Equatorial Plasma Bubble) qui peut retarder les ondes radio. et dégrader les performances du GPS.
L’équipe de chercheurs, qui comprenait principalement des scientifiques japonais collaborant avec diverses institutions, a utilisé le satellite Arase pour détecter les survenues d’EPB, le satellite Himawari-8 pour vérifier l’arrivée initiale des ondes de pression atmosphérique, et des observations ionosphériques au sol pour suivre les mouvements de l’ionosphère.
Ces scientifiques ont observé une structure irrégulière de la densité électronique au niveau de l’équateur après l’arrivée des ondes de pression générées par l’éruption volcanique. Ils ont également fait une découverte surprenante. Pour la première fois, ils ont montré que les fluctuations ionosphériques commencent quelques minutes à quelques heures plus tôt que les ondes de pression atmosphérique impliquées dans la génération des bulles de plasma. Cela signifie que le modèle du couplage géosphère-atmosphère-cosmosphère qui existait jusqu’à présent et qui stipulait que les perturbations ionosphériques ne se produisent qu’après l’éruption, doit être révisé.
De plus, les chercheurs ont constaté que l’EPB s’étend beaucoup plus loin que prévu par les modèles classiques. Cette découverte montre qu’il y a intérêt à prêter attention au lien entre l’ionosphère et la cosmosphère lorsque des phénomènes naturels extrêmes, tels que l’éruption du Hunga Tonga-Hunga Ha’apai, se produisent.
Les résultats de ces recherches présentent un intérêt du point de vue scientifique, mais aussi du point de vue de la météo spatiale et de la prévention des catastrophes.
Source : The Watchers, un excellent site qui publie des articles et des informations en relation avec la science et l’environnement.

——————————————-

The eruption of Hunga Tonga-Hunga Ha’apai, the underwater volcano in Tonga, in January 2022 was exceptional and a treasure for scientsists who keep making new discoveries. For instance, they have already an analysis that showed this eruption created the highest volcanic cloud ever recorded. For the first time, a volcanic plume has been seen to penetrate the stratopause, the upper limit of the stratosphere.

This time, an international team found that the eruption disrupted satellite signals. The researchers used both satellite and ground-based ionospheric observations to show that an air pressure wave triggered by the volcanic eruptions could produce an equatorial plasma bubble (EPB) in the ionosphere, severely disrupting satellite-based communications. The findings were published in the journal Scientific Reports.

The ionosphere is the region of the Earth’s upper atmosphere where molecules and atoms are ionized by solar radiation, creating positively charged ions. The area with the highest concentration of ionized particles, the F-region, plays a crucial role in long-distance radio communication, reflecting and refracting radio waves used by satellite and GPS tracking systems back to the Earth’s surface. However, irregularities in the F-region, such as the movement of plasma, electric fields, and neutral winds, can cause the formation of a localized irregularity of enhanced plasma density, creating a bubble-like structure called an EPB that can delay radio waves and degrade the performance of GPS.

The team, that mainly included Japanese scientists in collaboration with various institutions, used the Arase satellite to detect EPB occurrences, the Himawari-8 satellite to check the initial arrival of air pressure waves, and ground-based ionospheric observations to track the motion of the ionosphere.

They observed an irregular structure of the electron density across the equator that occurred after the arrival of pressure waves generated by the volcanic eruption.

The group also made a surprising discovery. For the first time, they showed that ionospheric fluctuations start a few minutes to a few hours earlier than the atmospheric pressure waves involved in the generation of plasma bubbles. This suggests that the long-held model of geosphere-atmosphere-cosmosphere coupling, which states that ionospheric disturbances only happen after the eruption, needs revision.

Furthermore, the researchers found that the EPB extended much further than predicted by the standard models. This discovery suggests that we should pay attention to the connection between the ionosphere and the cosmosphere when extreme natural phenomena, such as the Tonga event, occur.

The results of this research are significant not only from a scientific point of view but also from the point of view of space weather and disaster prevention.

Source : The Watchers, an excellent website that releases articles and information linked to science and the environment.

Hunga Tonga-Hunga Ha’apai, l’éruption de tous les superlatifs (Source: NASA)