Le mercure du permafrost, une autre menace pour notre environnement // The mercury in permafrost, another threat to our environment

On savait déjà que la fonte du permafrost dans l’Arctique libère d’importantes quantités de gaz à effet de serre. Aujourd’hui, les scientifiques révèlent qu’il recèle aussi des quantités considérables de mercure, une neurotoxine agressive qui représente une menace sérieuse pour la santé humaine.
Selon une étude menée par des scientifiques du National Snow and Ice Data Center à Boulder (Colorado) et publiée dans la revue Geophysical Research Letters, il y aurait l’équivalent de cinquante piscines olympiques de mercure piégées dans le permafrost. C’est deux fois plus que ce que contient l’ensemble des sols, l’atmosphère et les océans ailleurs dans le monde. Selon l’étude, lorsque le pergélisol (autre nom du permafrost) dégèlera dans les prochaines années, une partie de ce mercure sera libérée dans l’environnement, avec un impact non encore estimé – mais considérable – sur les gens et sur nos ressources alimentaires. Les scientifiques ont effectué leurs recherches en prélevant des carottes de pergélisol à travers l’Alaska. Ils ont mesuré les niveaux de mercure et ensuite extrapolé pour calculer la quantité de mercure dans le permafrost ailleurs dans le monde, en particulier au Canada, en Russie et dans d’autres pays nordiques.
Le mercure, un élément naturel, se lie à la matière vivante à travers la planète, mais l’Arctique est particulier. Normalement, lorsque les plantes meurent et se décomposent, le mercure est libéré dans l’atmosphère. La différence dans l’Arctique, c’est que les plantes ne se décomposent pas complètement. Au lieu de cela, leurs racines sont gelées et ensuite enterrées sous plusieurs couches de sol. Cela retient le mercure qui se trouvera libéré si le permafrost vient à fondre.
La quantité de mercure libérée dépend du dégel du permafrost qui, à son tour, dépend du volume des émissions de gaz à effet de serre et du réchauffement de la planète. Le dégel du permafrost a commencé dans certaines régions et les scientifiques prévoient qu’il se poursuivra au cours du 21ème siècle. L’étude indique que si les niveaux d’émissions de gaz à effet de serre actuels se poursuivent jusqu’en 2100, le permafrost se sera réduit de 30 à 99%.
La question est de savoir où ira le mercure dans un tel contexte, et quels seront ses effets sur la Nature et sur l’Homme. Il pourrait contaminer les rivières qui se jettent dans l’océan Arctique. Il pourrait aussi se propager dans l’atmosphère, ou dans ces deux univers. Le problème est que le mercure, bien que naturel, représente un danger pour les humains et la faune, en particulier sous certaines formes. Nous rejetons déjà du mercure en faisant brûler du charbon. Il se répand alors dans l’atmosphère où il parcourt de longues distances. Quand il pleut sur l’océan ou sur les lacs, le mercure pénètre dans la chaîne alimentaire. Il s’accumule d’abord à l’intérieur des micro-organismes, puis en concentrations de plus en plus élevées dans l’organisme des prédateurs, tels les poissons, qui se nourrissent de ces petits organismes. Lorsque les humains consomment du poisson contenant du mercure en quantités trop importantes, cela peut être dangereux, surtout pour les femmes enceintes.
Dans l’Arctique, le mercure peut également s’accumuler dans les organismes de grands mammifères comme les ours polaires ou les narvals, phénomène qui a fait l’objet de plusieurs études. Si les concentrations de mercure dans l’Arctique continuaient à augmenter, ce serait une nouvelle preuve de l’impact du changement climatique sur les communautés autochtones qui y vivent.
Les résultats de l’étude sont inquiétants car elle nous apprend que le permafrost n’est pas seulement une colossale zone de stockage de carbone susceptible de modifier le climat de la planète ; c’est aussi une importante zone de stockage de mercure qui risque d’être rejeté dans notre environnement avec le dégel du pergélisol. Cela est particulièrement préoccupant au vu de la prédominance des écosystèmes de zones humides dans l’Arctique.
Source: The Washington Post.

————————————

We already knew that thawing Arctic permafrost would release powerful greenhouse gases. Now, scientists reveal it could also release massive amounts of mercury which is a potent neurotoxin and serious threat to human health.

According to a study led by scientists with the National Snow and Ice Data Center in Boulder, Colorado and published in the journal Geophysical Research Letters, there is the equivalent of 50 Olympic swimming pools of mercury trapped in the permafrost. This is twice as much as the rest of all soils, the atmosphere, and ocean combined. According to the study, when permafrost thaws in the future, some portion of this mercury will get released into the environment, with unknown impact to people and our food supplies. The scientists performed the research by taking cores from permafrost across Alaska. They measured mercury levels and then extrapolated to calculate how much mercury there is in permafrost across the globe, where it covers large portions of Canada, Russia and other northern countries.

Mercury, a naturally occurring element, binds with living matter across the planet, but the Arctic is special. Normally, as plants die and decay, they decompose and mercury is released back to the atmosphere. But in the Arctic, plants often do not fully decompose. Instead, their roots are frozen and then become buried by layers of soil. This suspends mercury within the plants, where it can be remobilized again if permafrost thaws.

How much mercury would be released depends on how much the permafrost thaws, which in turn depends on the volume of greenhouse-gas emissions and subsequent warming of the planet. However, permafrost thaw has begun in some places and scientists project that it will continue over the course of the century. The study says that with current emissions levels through 2100, permafrost could shrink by between 30 and 99 percent.

The question is to know where this mercury will go, and what it will do. It could spread through rivers that into the Arctic Ocean. Or it could enter the atmosphere. Or both. The problem is that mercury, although naturally occurring, is damaging to humans and wildlife, especially in certain forms. We are already causing mercury to enter the atmosphere by burning coal, which lofts the element into the atmosphere where it travels long distances. When it rains out into the ocean or lakes, mercury enters the food chain, first accumulating in the bodies of microorganisms and then growing increasingly concentrated in predators – like fish – that feed off smaller organisms. When humans consume mercury-laden fish in quantities too large, it can be dangerous, especially for pregnant women.

In the Arctic, mercury can also accumulate in the bodies of major mammal predators, such as polar bears or narwhal, a phenomenon that has been documented. If the Arctic mercury burden further increases, it could be another way that climate change affects the native communities living there.

The results of the study are concerning because what we are learning is that not only is permafrost a massive storage for carbon that will feedback on global climate, but permafrost also stores a globally significant pool of mercury, which is at risk of being released into the environment when permafrost thaws. This is especially concerning, given the predominance of wetland ecosystems in the Arctic.

Source: The Washington Post.

Carte montrant l’étendue du permafrost dans l’Arctique (Source: National Snow and Ice Data Center)

Les effets du réchauffement climatique sur la vie dans la toundra // The effects of global warming on life in the tundra

Les conditions de vie sont très spéciales dans l’Arctique pendant l’hiver. Ainsi, voyager avec des véhicules lourds à travers la toundra n’est possible que lorsque le sol est profondément gelé. De nos jours, avec le réchauffement climatique, les habitants du nord de l’Alaska doivent attendre fin décembre ou début janvier pour commencer à se déplacer en dehors des routes traditionnelles.

Si l’industrie a été en mesure de faire face aux changements, de nombreux habitants ont encore du mal à s’adapter à ce nouveau mode de vie. Juste avant Noël 2017, les conditions n’étaient toujours pas réunies pour le passage des gros véhicules industriels qui peuvent gravement endommager le sol de la toundra. La température de l’air encore trop élevée et une épaisse couche de neige empêchaient le sol à 30 centimètres de profondeur d’atteindre les -5 ° C requis pour leur permettre de circuler. De plus, alors que certaines zones avaient les 22 centimètres de neige obligatoires pour circuler dans les collines et 15 centimètres dans les zones côtières, d’autres ne correspondaient pas aux conditions requises. À la mi-janvier 2018, la zone côtière à l’est de l’Alaska répondait aux critères d’ouverture, tandis que les autres parties de la côte et des collines restaient fermées.
La fin décembre et le début janvier sont devenues la norme pour commencer le hors piste à cause de la hausse des températures qui affecte désormais les mois d’hiver dans la majeure partie de l’Arctique. En jetant un coup d’œil aux dates de début du hors piste au cours des quatre dernières décennies, il est indéniable que les dates d’autorisation se sont sensiblement modifiées. Au fil des ans, la saison de hors piste a commencé de plus en plus tard. Cependant, il est important de noter que d’autres facteurs ont pu contribuer à la modification des dates d’ouverture. Au début des années 1970, la toundra était accessible en octobre ou en novembre. Vers le milieu des années 1980, les dates d’ouverture du hors piste  étaient principalement en novembre, avec quelques exceptions en décembre, et une seule ouverture en janvier pendant l’hiver 1984-1985. À la fin des années 1990, les ouvertures de janvier étaient devenues monnaie courante et les dates d’ouverture de novembre avaient quasiment disparu. Au cours des années 2000, les dates d’ouverture se situaient uniquement en décembre et janvier.
Les hivers plus courts et plus chauds ont des effets importants sur les habitants qui dépendent de conditions météorologiques froides pour accéder en toute sécurité à leurs territoires de chasse ou pour se déplacer entre les communautés ou les camps.
Les chasseurs du district de North Slope se plaignent souvent des conditions de glace de mer qui sont devenues imprévisibles et dangereuses. Les poches d’eau libre et les courants changeants rendent difficiles les prévisions de chasse pour les baleiniers, et la pratique de leur activité est devenue plus dangereuse.
Dans la toundra, les chasseurs éprouvent souvent plus de difficultés à parcourir de longues distances en motoneige, et beaucoup de terres restent dépourvues de neige tout au long de la saison. Dans certaines régions, les rivières ne gèlent plus, ce qui signifie que les chasseurs ne peuvent pas voyager de façon fiable, que ce soit par bateau ou par motoneige.
Sans itinéraires hivernaux fiables, les chasseurs et leurs communautés peuvent se trouver coupés des ressources dont ils dépendent. S’ils parviennent à les atteindre, il leur faut souvent dépenser plus d’argent en carburant car ils doivent voyager plus loin qu’auparavant pour rapporter une même quantité de nourriture.
Ainsi, alors que certains secteurs réussissent à s’adapter aux changements, d’autres parviennent difficilement à modifier leurs pratiques d’une année à l’autre.
Source: Anchorage Daily News.

————————————-

Living conditions are very special in the Arctic during the winter. For instance, travelling with heavy vehicles across the tundra is only possible when the ground is deeply frozen. Nowadays, with climate change and global warming, people in the north of Alaska have to wait until late December and early January to start the off-road season.

While industry has had to adapt to changes, many locals are still struggling to find a new normal amid the shifting seasons. Just before Christmas 2017, conditions still were not favourable for travel for the large and heavy industry vehicles that, without a buffer provided by snow and solidly frozen ground, can do serious damage to the underlying tundra. High ambient temperatures and deep snow kept the ground at a depth of 30 centimetres from reaching the requisite -5°C. Additionally, while certain monitoring areas had the 22 centimetres of snow required for the foothills and 15 centimetres of snow for the coastal areas, others did not. By mid-January 2018, the eastern coastal area had met the criteria to open, while the other parts of the coast and foothills remained closed.

Late December and early January starts to the off-road season have become the norm as higher temperatures continue to mark the winter months across most of the Arctic. Glancing back over the start dates for the last four decades, a noticeable shift in start times has undoubtedly happened: As the years have gone by, the off-road season has started later and later. However, it is important to note there may have been other factors at play contributing to the changing opening dates. In the early 1970s, the tundra opened consistently in October or November. By the mid-1980s, the opening dates were predominantly in November, with a few December dates, and a single January opening in the winter of 1984-85. By the late 1990s, January openings were common and November dates had all but disappeared. Throughout the 2000s, December and January were the only months with openings.

Shorter and warmer winters have had significant effects on locals who depend on cold-weather conditions for safe travel to hunting grounds and between communities or camps.

Local hunters across the North Slope have frequently complained of unpredictable and hazardous sea ice conditions. Pockets of open water and shifting flows have made it harder for whalers to predict how their environments will shift and when, making the practice more dangerous.

Out on the tundra, hunters are often finding it harder to travel extended distances by snowmachine with more land remaining open and snow-free throughout the season. In some areas, rivers have not frozen solid, meaning hunters can’t travel reliably by either boat or snowmachine.

Without dependable winter routes, subsistence hunters and their communities can be cut off from the resources on which they depend. If they can reach them, they often find themselves spending more money on gas and transportation to travel further afield than they used to for the same nutritional return.

So, while certain sectors are able to compensate for changes, others cannot so easily shift their practices year-to-year.

Source : Anchorage Daily News.

Vues de la toundra (Photos: C. Grandpey)

Morses et ours polaires victimes du réchauffement climatique // Walruses and polar bears are victims of global warming

Comme je l’ai indiqué à plusieurs reprises, les morses et les ours polaires sont victimes du réchauffement climatique dans l’Arctique.

Les communautés qui vivent dans la mer de Béring voient depuis plusieurs années une forte baisse de la population de morses qui constituent une part importante de leur nourriture. La vente de l’ivoire sculpté à partir des défenses des morses, légale uniquement pour les autochtones d’Alaska, apporte un revenu supplémentaire à ces communautés où le taux de chômage est élevé. La hausse des températures a fait fondre la glace sous laquelle les morses avaient l’habitude de plonger et sur laquelle ils venaient se reposer. Ils ont migré vers des espaces situés plus au nord.

Les ours polaires sont eux aussi les victimes de la réduction de la banquise. Selon l’USGS, la population d’ours polaires a diminué d’environ 40% au cours de la décennie écoulée. Dans une étude publiée au début du mois de février dans la revue Science, les scientifiques expliquent que les ours polaires ont des besoins énergétiques beaucoup plus élevés que prévu. Il leur faut beaucoup de phoques pour satisfaire un métabolisme 1,6 fois plus important que celui avancé par de précédentes estimations.

Les biologistes ont suivi neuf femelles en Arctique dans la mer de Beaufort en équipant les plantigrades de caméras-colliers et en comparant leur urine et prise de sang à plusieurs jours d’intervalle. L’étude s’est déroulée entre avril et juillet, époque où les ours chassent le plus activement et emmagasinent la graisse dont ils ont besoin pour subsister toute l’année. Parmi les ours étudiés, quatre ont perdu 10% ou plus de leur masse corporelle en l’espace de 8 à 11 jours.

De précédentes hypothèses avaient induit les scientifiques en erreur sur le métabolisme des plantigrades. Des chercheurs pensaient que leur technique de chasse, qui consiste essentiellement à attendre la proie, les conduisait à dépenser peu d’énergie pour se nourrir. Ils pensaient aussi qu’ils pouvaient ralentir leur métabolisme lorsqu’ils n’attrapaient pas assez de phoques.

L’Arctique se réchauffe deux fois plus rapidement que le reste de la planète et la fonte de la glace contraint les ours à parcourir de plus grandes distances pour trouver les jeunes phoques qui sont leur nourriture de prédilection. La glace à travers l’Arctique diminue de 14% par décennie, ce qui va probablement réduire l’accès des ours à leurs proies. Plusieurs d’entre eux ont été repérés en train de plonger pendant plus de trois minutes, ce qui est beaucoup plus longtemps que d’habitude. Normalement les ours remontent à la surface pour reprendre leur souffle et ils utilisent la banquise pour se reposer et se dissimuler quand ils chassent les phoques. Avec la disparition de la glace, ils poursuivent les phoques plus longtemps sous l’eau, la plupart du temps en ratant leurs cibles. Il s’ensuit un risque évident d’épuisement, puis de famine.

Sources : USGS & France Info.

——————————–

As I have repeated it many times, walruses and polar bears are victims of global warming in the Arctic.
Communities living in the Bering Sea have for many years seen a sharp decline in the walrus population, which is an important part of their diet. The sale of carved ivory from walrus tusks, legal only for Alaska natives, provides additional income for those communities where the unemployment rate is high. Rising temperatures melted the ice under which walruses used to dive and on which they came to rest. They migrated to areas further north.
Polar bears are also victims of the reduction of the sea ice. According to USGS, the polar bear population has declined by about 40% over the past decade. In a study published in early February in the journal Science, scientists explain that polar bears have much higher energy needs than expected. They need a lot of seals to satisfy a metabolism 1.6 times higher than that put forward by previous estimates.
Biologists followed nine females in the Beaufort Sea by equipping the plantigrades with camera-collars and comparing their urine and blood samples several days apart. The study took place between April and July, when bears hunt the most actively and store the fat they need to survive all year. Of the bears studied, four lost 10% or more of their body weight in 8 to 11 days.
Previous hypotheses had misled scientists about the metabolism of plantigrades. Researchers thus thought that their hunting technique, which essentially consisted of waiting for the prey, led them to spend little energy to feed themselves. They also thought they could slow down their metabolism when they did not catch enough seals.
The Arctic is warming twice as fast as the rest of the world and melting ice forces bears to travel further to find the young seals that are their favourite food. Ice across the Arctic is decreasing by 14% per decade, which is likely to reduce bear access to prey. Several of them have been spotted diving for more than three minutes, which is much longer than usual. Normally, bears come to the surface to catch their breath and they use the ice to rest and hide when they hunt seals. With the disappearance of the ice, they pursue seals longer underwater, often missing their targets. There follows a clear risk of exhaustion, then famine.
Sources: USGS & France Info.

Capture d’image de la webcam de Round Island

Photo: C. Grandpey

Le réchauffement climatique au nord de l’Alaska // Global warming in the north of Alaska

Utqiaġvik, mieux connue sous son ancien nom de Barrow, est la plus grande ville du district de North Slope en Alaska. Elle est située au nord du cercle polaire arctique. C’est la 11ème localité la plus septentrionale au monde et la plus septentrionale des États-Unis. Un peu plus de 4 000 personnes vivent à Barrow.
En raison de sa situation géographique, Barrow ne voit jamais le soleil en hiver. Il a fait sa réapparition à l’horizon le 22 janvier 2018, pour la première fois depuis la mi-novembre. Le 23 janvier, la lumière du jour a augmenté de presque une heure par rapport à la veille. La ville aura quatre heures de jour à la fin de janvier. Le 11 mai, il n’y aura pas de nuit.
Le 21 janvier a été une autre journée remarquable. C’était la première fois depuis Halloween que les thermomètres de la ville enregistraient une température de l’air inférieure à la normale
Les derniers automnes et les hivers à Utqiaġvik ont été particulièrement doux. Selon le biologiste Craig George, qui étudie les baleines boréales et d’autres animaux à Utqiaġvik, on ne dit plus à Utqiaġvik que « le climat est en train de changer», mais que «le climat a changé». Le biologiste se souvient du mois d’octobre 1988 quand trois baleines grises se sont retrouvées piégées dans la glace de la Mer de Beaufort, juste au nord de Point Barrow. Les baleines ont fait la une de la presse mondiale lorsque les habitants du coin ont utilisé des tronçonneuses pour découper des trous dans la glace de mer pour permettre aux cétacés de respirer et leur frayer un chemin vers l’océan. La situation était bien différente cette année. Il n’y avait pas de glace sur la mer et les vagues venaient déferler sur la côte. La température de l’air atteignait 1,1 degré Celsius le jour du solstice d’hiver. Comme je l’ai écrit dans une note précédente (le 16 décembre 2017), en décembre, les scientifiques de la NOAA qui relevaient des dernières températures fournies par les capteurs d’Utqiaġvik ont détecté des anomalies dans les algorithmes informatiques et ont carrément supprimé les relevés de novembre parce qu’ils avaient l’air faux!
Selon la NOAA, la température moyenne d’octobre à décembre 2017 à Utqiaġvik a été de 8,3°C au-dessus de la normale et la plus élevée de cette période au cours des 98 dernières années. Depuis 2000, la température moyenne d’octobre à Utqiaġvik a augmenté de 3,8°C. La température moyenne de novembre a augmenté de 3,3°C et celle de décembre de 2,2°C. Les habitants d’Utqiaġvik ont ​​connu des températures quotidiennes supérieures à la normale pendant 77% de l’année en 2017!
Une autre conséquence du changement climatique à Utqiaġvik concerne le sol gelé ou  pergélisol. La température du pergélisol à 1,20 mètre de profondeur est de 3 à 4 degrés Celsius plus élevée que pour la même période l’année dernière, en sachant que l’année dernière était plus chaude que la normale. La glace de mer qui se forme plus tard en automne et qui recouvre moins d’océan est la cause de cette hausse des températures. L’océan dépourvu de glace a un effet de réchauffement sur les terres qui l’entourent.
Au vu des données satellitaires, la Mer des Tchouktches, à l’ouest d’Utqiaġvik, n’a pas gelé avant le 1er janvier 2018 alors qu’elle était en moyenne recouverte de glace vers le 20 novembre à la fin des années 1980.
Les habitants d’Utqiaġvik se sentent démunis et ne peuvent qu’espérer un retour aux conditions telles qu’elles étaient avant les années 1990, époque où le réchauffement climatique a vraiment commencé.
Source: Anchorage Daily News.

En cliquant sur ce lien, vous verrez défiler en accélérer les 3 derniers jours à Utqiaġvik. Lorsque la lumière du jour le permet, on aperçoit la mer partiellement envahie par la glace.

http://feeder.gina.alaska.edu/feeds/webcam-uaf-barrow-seaice-images/movies/current-3_day_animation.webm

——————————————-

Utqiaġvik, commonly known by its former name Barrow, is the largest city of the North Slope Borough in Alaska. It is located north of the Arctic Circle. It is the 11th northernmost public community in the world and is the northernmost city in the United States. A little more than 4,000 people live in Barrow.

Due to its northern location, Barrow never sees the sun during the winter. It only reappeared on the horizon on January 22nd 2018 for the first time since mid-November. January 23rd featured almost an hour’s increase from the day before. The town will have four hours of daylight by the end of January. By May 11th, there will be no night.

January 21st was another remarkable day. It was the first time since Halloween that the town’s thermometers recorded a below-normal daily average air temperature

Just as dramatic are the recent warm autumns and winters in Utqiaġvik. According to biologist Craig George, who studies bowhead whales and other animals in Utqiaġvik, the term is no longer ‘climate change’; it is ‘climate changed.’ The biologist remembers October 1988, when three grey whales became trapped in Beaufort Sea ice just north of Point Barrow. The whales became a worldwide news story, as local rescuers used chain saws to cut circular breathing holes in the sea ice, trying to lead the whales to open ocean. The situation was different this year. There was no ice and the waves were crashing onshore. The temperature was 1.1 degrees Celsius on winter solstice. As I put it in a previous note (December 16th 2017), in December, NOAA scientists looking for the latest temperatures from Utqiaġvik sensors found computer algorithms had flagged and removed November readings because they looked wrong!

The average temperature for October through December 2017 was 8.3°C above normal and highest for that span in the last 98 years, according to NOAA. Since 2000, the average October temperature in Utqiaġvik has increased 3.8°C. November’s average temperature has increased 3.3°C degrees and December’s, 2.2°C. Utqiaġvik residents experienced above-normal average daily temperatures 77 percent of the year in 2017!

Another consequence of climate change in Utqiaġvik concerns the frozen ground or permafrost. Permafrost temperatures at 1.20 metres deep are 3 to 4 degrees Celsius higher than at the same time last year, even though last year was also warmer than normal. Sea ice that is forming later in autumn and covering less ocean is driving the warmth. Open ocean has a warming effect on the land around it.

The Chukchi Sea to the west of Utqiaġvik did not ice over until about Jananuary 1st, 2018, according to the latest satellite record that goes back to the late 1970s. An average date the Chukchi Basin was ice-covered in the late 1980s was about November 20th.

Residents in Utqiaġvik  feel helpless and can only hope for a return to conditions before the 1990s, when the extreme warming began.

 Source: Anchorage Daily News.

By clicking on this link, you will see a timelapse video of the last 3 days in Utqiaġvik. When there is sufficient daylight, one can discern the sea which is partially covered with the ice.

http://feeder.gina.alaska.edu/feeds/webcam-uaf-barrow-seaice-images/movies/current-3_day_animation.webm

Source: Google maps