Dernières nouvelles de l’Askja (Islande) // Latest news of Askja Volcano (Iceland)

Une équipe scientifique composée de chercheurs du Met Office islandais, de l’Institut des géosciences de l’Université d’Islande et de l’Université de Göteborg (Suède) a visité l’Askja en août 2024. La mission comprenait des mesures géodésiques, de pH, de température et de gaz pour faire un état des lieux de l’activité volcanique dans la région.
Les données obtenues par la mission scientifique indiquent que le soulèvement du sol dans la région se poursuit, même s’il a ralenti depuis septembre 2023. La station GNSS, située à l’ouest de l’Öskjuvatn, a enregistré un soulèvement du sol de 12 cm au cours de l’année écoulée. es données satellitaires InSAR et les inclinomètres corroborent cet épisode de soulèvement.

Données satellitaires (image Insar) montrant le soulèvement sur l’Askja pour la période juillet 2021-août 2023. Les zones jaunes et rouges au milieu de l’image sont celles qui subissent la plus grande déformation. (Source : Met Office).

Les modélisations montrent que l’accumulation de magma dans la région se produit à une profondeur d’environ 3 km, mais rien n’indique que ce magma se rapproche de la surface. Environ 4,4 millions de mètres cubes de magma se sont accumulés au cours des 12 derniers mois, ce qui porte à environ 44 millions de mètres cubes le volume total depuis juillet 2021.
Les mesures effectuées dans le cratère Víti ne montrent aucun changement significatif du pH, de la température de l’eau ou de sa chimie.
Les données historiques montrent que la déformation au niveau de l’Öskja ont commencé en 1966, avec un soulèvement important observé entre 1970 et 1972. Le sol s’est ensuite affaissé jusqu’en 2021, date à laquelle un soulèvement a été de nouveau détecté. Le soulèvement précédent s’est produit sans provoquer d’éruption.
La dernière éruption de l’Askja a eu lieu en 1961, avec un VEI 2. Elle a entraîné la formation du champ de lave de Vikrahraun. Une augmentation de l’activité sismique et géothermale avait été observée 20 jours avant l’éruption.
Des éruptions explosives se sont produites sur l’Askja ; la plus récente a eu lieu le 3 janvier 1875. Elle a entraîné la formation d’une petite caldeira de 4,5 km de large, désormais remplie par le lac Öskjuvatn, et qui coupe la lèvre de la plus grande caldeira centrale.
Si une éruption devait se produire sur l’Askja, le Met Office explique qu’elle devrait être de relativement faible intensité, semblable à celles du 20ème siècle.
Source : Icelandic Met Office.

Caldeira de l’Askja avec l’Oskjuvatn et le cratère Viti (Photos: C. Grandpey)

————————————————-

A scientific team including researchers from the Icelandic Meteorological Office, the Institute of Geosciences at the University of Iceland, and the University of Gothenburg (Sweden) visited Askja Volcano in August 2024. The trip involved geodetic, pH, temperature, and gas measurements to monitor the area’s volcanic activity.

Data from the scientific mission indicate that the land uplift in the area continues, although the rate has slowed since September 2023. The GNSS station, located west of Öskjuvatn, recorded a 12 cm land rise over the past year and satellite data from InSAR and tilt measurements corroborate this ongoing uplift.

Modeling calculations suggest that magma accumulation in the area is occurring at a depth of about 3 km, with no indications that magma is moving closer to the surface. Approximately 4.4 million cubic meters of magma have accumulated in the past 12 months, bringing the total volume since July 2021 to about 44 million cubic meters.

Measurements taken in the Víti crater showed no significant changes in pH, water temperature, or chemistry.

Historical data show that the first deformation measurements in Öskja began in 1966, with significant uplift observed between 1970 and 1972. The land then subsided until 2021, when uplift was once again detected. The previous uplift occurred without causing any eruption.

The last eruption in Askja was in 1961, with a VEI 2. It resulted in the formation of the Vikrahraun lava field. Increased seismic and geothermal activity was noted 20 days before the eruption.

Explosive eruptions have occurred in Askja, the most recent on January 3rd, 1875. It resulted in the formation of a small 4.5 km wide caldera, now filled by Öskjuvatn Lake, that truncates the rim of the larger central caldera.

Should an eruption occur at Askja, it is expected to be relatively small, similar to those in the 20th century.

Source : Icelandic Met Office.

Mesure de la gravité sur le Kilauea (Hawaii) // Gravimetry on Kilauea (Hawaii)

L’un des derniers articles ‘Volcano Watch’ du Hawaiian Volcano Observatory (HVO) était dédié à la mesure de la gravité, un paramètre intéressant sur le Kilauea et sur d’autres volcans actifs sur Terre. En effet, les mesures de gravité peuvent être utilisées pour déterminer comment est répartie la masse sous un volcan.

La gravimétrie, autrement dit la mesure de l’accélération de la pesanteur g en un point donné, est une méthode géophysique qui permet d’imager à différentes échelles la structure interne de la Terre. Elle consiste à étudier, de façon indirecte, les variations spatio-temporelles du champ de pesanteur terrestre liées à la distribution des masses au sein de la Terre, à proximité de la surface, voire en surface.

Sur le Kilauea, le HVO effectue des relevés de microgravité de routine pour surveiller l’activité volcanique et déterminer les variations de gravité. Ces fluctuations peuvent indiquer que le magma est en train de s’accumuler dans le réservoir. Les relevés révèlent de petits changements de gravité au fil du temps au niveau des « points de repère » (benchmarks en anglais) judicieusement répartis dans la zone sommitale du volcan.
Le réseau de surveillance gravimétrique du Kilauea comprend une cinquantaine de ces repères. Les relevés annuels de microgravité sont cruciaux pour savoir si l’inflation ou la déflation du volcan est causée par l’intrusion ou le retrait de magma.
Le HVO effectue ces relevés à l’aide de petits instruments de la taille d’une boîte à chaussures, les gravimètres relatifs. Une prise de mesure de la gravité consiste à mettre de niveau une petite plaque de base (moins de 30 cm de diamètre et 7,5 cm de hauteur) sur le sol, à placer le gravimètre sur ce support et à effectuer une mesure de cinq minutes. En plus de la gravité, des mesures de haute précision sont également effectuées à l’aide du GPS.
Les gravimètres sont extrêmement sensibles aux vibrations, de sorte que des surfaces dures et stables, comme des affleurements rocheux, sont nécessaires pour prendre une mesure.
En plus de suivre les variations de la gravité au fil du temps, les levés gravimétriques peuvent être utilisés pour cartographier la densité du sol sous la surface. Les levés Bouguer, nommés d’après un géophysicien français du 18ème siècle, mesurent la gravité à des centaines, voire des milliers d’emplacements à un moment donné et il n’est pas nécessaire d’effectuer un étalonnage reproductible de l’emplacement ou de la précision des levés de microgravité. Les levés Bouguer utilisent les mêmes gravimètres relatifs que ceux utilisés pour les levés en microgravité, mais les mesures sont liées à une « station de base » de référence, où la valeur réelle de la gravité a été déterminée de manière absolue.*
Alors que les levés en microgravité et ceux de Bouguer sont utilisés tous les deux pour déterminer la répartition de la masse sous un volcan, les levés en microgravité seuls sont utilisés pour modéliser les changements de ces paramètres, tandis que les levés Bouguer peuvent révéler les caractéristiques globales des matériaux en profondeur. Les modèles Bouguer bidimensionnels et tridimensionnels peuvent fournir des informations sur la structure géologique des volcans, y compris identifier des réservoirs magmatiques, des intrusions, des glissements de terrain et des effondrements, ainsi que des failles non exposées. Sur le Kilauea, ils ont également été utilisés pour définir les zones probables de circulation de fluides hydrothermaux. Ensemble, les données de microgravité et de Bouguer peuvent donner un aperçu de la structure du sous-sol et des changements au sein de cette structure.
Les levés Bouguer sont effectués sur le Kilauea depuis plus de 70 ans ; les deux dernières campagnes de mesures au sommet ont été réalisées en 2009 et 2020. Au cours du mois de janvier 2023, une équipe de trois personnes a mesuré la gravité au niveau de plus de 400 sites sur le sommet du Kilauea. Cette étude gravimétrique de Bouguer sera la première à étudier les changements importants liés à l’effondrement de la caldeira en 2018. Les résultats de ce levé gravimétrique seront utilisés pour affiner le modèle développé à partir de l’étude sismique prévue pour l’été 2023 au sommet du volcan.
Source : USGS, HVO.

* Le champ de pesanteur théorique en un point est calculé en première approximation à partir de la distance au centre de la Terre, puis on lui applique des corrections prenant en compte la rotation de la Terre sur elle-même, sa non-sphéricité (ellipsoïde), les écarts de densité du
sous-sol et les effets des marées terrestres.

On appelle anomalie gravimétrique de Bouguer, au point considéré sur l’ellipsoïde de référence, l’écart entre le champ de pesanteur terrestre mesuré et le champ de pesanteur théorique.

——————————————-

One of the latest ‘Volcano Watch’ articles by the Hawaiian Volcano Observatory (HVO) was dedicated to the measurement of gravity, an interesting parameter on Kilauea and on other active volcanoes on Earth. Indeed, measurements of gravity can be used to determine how mass is distributed beneath a volcano.

Gravimetry, or the measurement of the acceleration of gravity g at a given point, is a geophysical method which makes it possible to image the internal structure of the Earth at different scales. It consists in studying, indirectly, the spatio-temporal variations of the Earth’s gravity field linked to the distribution of masses within the Earth, near the surface, or even on the surface.

At Kilauea, HVO performs routine microgravity surveys to monitor volcanic activity and to determine changes in gravity. Those changes can indicate whether magma is accumulating in a volcano’s magma reservoir.The surveys measure small gravity changes over time at “benchmarks” which are precisely controlled locations spread across the volcano’s summit area.

The Kilauea microgravity monitoring network includes about 50 benchmarks. Annual microgravity surveys are crucial in confirming whether ongoing uplift or subsidence is caused by magma intrusion or withdrawal.

HVO conducts these surveys using small, shoebox-sized instruments called relative gravimeters. A single gravity measurement consists of leveling a small baseplate (less than 30 cm in diameter and 7.5 cm tall) on the ground, placing the gravimeter on the baseplate, and making a five-minute measurement. Along with gravity, high-precision positions are also collected using GPS.

Gravimeters are extremely susceptible to vibration, so hard and stable surfaces, like solid rock outcroppings, are required to take a measurement.

In addition to tracking changes over time, gravity surveys can be used to map the density characteristics of the ground beneath the surface. These Bouguer surveys, named after an 18th-century French geophysicist, measure the gravity at hundreds to thousands of locations at a single point in time and do not need the repeatable location benchmarking or precision of microgravity surveys. Bouguer surveys use the same relative gravimeters that are used for microgravity surveys, but measurements are tied to a reference “base station,” where the actual value of gravity has been determined absolutely.*

While both microgravity and Bouguer surveys are used to determine how mass is distributed beneath a volcano , microgravity surveys are used to model changes in these parameters, whereas Bouguer surveys can reveal the overall characteristics of the materials at depth. Two-and three-dimensional Bouguer models can provide insights into the geologic structure of volcanoes including identifying magma reservoirs, intrusions, landslide and collapse piles, and unexposed faults. At Kilauea, they’ve also been used to define likely areas of hydrothermal fluid circulation. Together, microgravity and Bouguer data can see subsurface structure and changes within that structure.

Bouguer surveys have been a routine tool at Kilauea for more than seven decades, with the two most recent summit surveys performed in 2009 and 2000. Over the month of January 2023, a three-person team measured gravity at more than 400 locations around Kilauea’s summit. Their Bouguer gravity survey will be the first to address significant large-scale changes associated with the 2018 caldera collapse. Results from this gravity survey will be used to help refine the model developed from the anticipated summer 2023 Kīlauea summit seismic study.

Source : USGS, HVO.

* The theoretical gravity field at a point is calculated as a first approximation from the distance to the center of the Earth, then corrective terms are applied to it taking into account the rotation of the Earth on itself, its non-sphericity (ellipsoid), the differences in density of the
subsoil and the effects of the earth’s tides.
The Bouguer gravimetric anomaly, at the point considered on the reference ellipsoid, is the difference between the measured terrestrial gravity field and the theoretical gravity field.

Caldeira sommitale du Kilauea après l’effondrement de 2018 (Crédit photo: HVO)

Nouvelles de Vulcano (Iles Eoliennes) // News of Vulcano (Aeolian Islands)

Personne n’en parle, mais l’accès à la Fossa di Vulcano (Iles Eoliennes) reste interdit au public, avec de fortes amendes aux personnes qui braveraient l’interdiction.

Photo: C. Grandpey

S’agissant des mesures effectuées par l’INGV, la situation n’a guère évolué par rapport aux semaines précédentes. Voici le bilan proposé le 20 décembre 2022 concernant les mesures effectuées entre le 12 et le 18 de ce même mois ;

– Température des fumerolles au niveau du cratère : elles restent stables à des valeurs élevées, autour de 370°C.

– Emissions de CO2 dans la zone du cratère : Elles se situent à des valeurs élevées avec une moyenne quotidienne de 2781 g/m2 pour le mois de décembre en cours.
Emissions de CO2 à la base du cône de La Fossa et dans la zone de Vulcano Porto : Les émissions enregistrés sur le site de Camping Sicilia montrent des valeurs supérieures à la normale. Le site Palizzi montre des valeurs moyennes, tandis que des valeurs proches de la normale sont enregistrées sur le site de Faraglione.

Source: INGV

– Emissions de SO2 dans la zone du cratère : elles demeurent à un niveau moyen-élevé mais en diminution.

Source: INGV

Sismicité : Faible à l’échelle locale. En revanche l’activité sismique se poursuit dans un secteur de la mer à l’ouest de l’île.
Déformations : Rien de significatif.

S’agissant des prévisions, l’INGV n’écarte aucune possibilité et énumère les risques observés généralement sur ce type de volcan : augmentation du dégazage fumerollien ; élévation de la température des gaz ; augmentation de la sismicité et des déformations ; apparition de phénomènes explosifs tels que des explosions phréatiques. Persistance du danger lié aux émissions de CO2 au niveau des sols dans les zones les plus vulnérables où le gaz est susceptible de s’accumuler.

————————————-

Nobody is talking much about it, but access to the Fossa di Vulcano (Aeolian Islands) remains forbidden to the public, with heavy fines for those who defy the ban.
With regard to the measurements carried out by INGV, the situation has hardly changed compared to the previous weeks. Here is the report suggested on December 20th, 2022 concerning the measurements carried out between the 12th and the 18th of this month;
Temperature of the fumaroles at the crater: they remain stable at high values, around 370°C.
CO2 emissions in the crater area: they are at high values with a daily average of 2781 g/m2 for the current month of December.
SO2 emissions in the crater area: they remain at a medium-high level but are decreasing.
CO2 emissions at the base of the La Fossa cone and in the Vulcano Porto area: the emissions recorded at Camping Sicilia show values higher than normal. The Palizzi site shows medium values, while values close to normal are recorded at the Faraglione site.
Seismicity: Low locally. On the other hand, seismic activity continues in a sea area to the west of the island.
Deformation: Nothing significant.

As far as predictions are concerned, INGV does not rule out any possibility and lists the risks generally observed on this type of volcano: increase in fumarollian degassing; rise in gas temperature; increased seismicity and deformation; occurrence of explosive phenomena such as phreatic explosions. Persistence of the danger related to CO2 emissions at ground level in the most vulnerable areas where the gas is likely to accumulate.

Mesures du dioxyde de soufre (SO2) sur le Kilauea (Hawaii) // SO2 measurements on Kilauea Volcano (Hawaii)

Dans un nouvel article, les scientifiques de l’Observatoire des Volcans d’Hawaii (HVO) expliquent comment ils analysent les panaches de dioxyde de soufre (SO2) émis par le Kilauea
Les analyses des panaches de SO2 sont essentielles pour surveiller et comprendre l’activité éruptive. Le HVO s’appuie aussi sur les mesures d’émission de SO2 pour les prévisions concernant le vog (brouillard volcanique) et pour évaluer les émissions de lave.
Le HVO utilise des caméras – aussi bien visuelles que thermiques – pour décrire l’activité volcanique. Un troisième type de caméra, la caméra ultraviolet (UV), permet aux volcanologues de visualiser des panaches de SO2. Le SO2 absorbe la lumière ultraviolette, ce qui la fait apparaître dans les images UV alors qu’elle n’est pas visible avec les caméras classiques.
Des caméras UV sont utilisées sur le Kilauea depuis 2010. En 2013, une collaboration entre le Cascades Volcano Observatory (CVO) et le HVO a permis l’installation d’un système de caméra UV automatisé au sommet du Kilauea. Ce réseau de caméras a été retiré en 2018 lorsqu’il a été menacé par l’ouverture de fractures au sol au cours de l’effondrement de la caldeira sommitale.
Avec le retour de la lave et d’un fort dégazage de SO2 au sommet du Kilauea fin 2020, le HVO et le CVO ont fait équipe avec des collègues de l’Université de Sheffield au Royaume-Uni. Les scientifiques britanniques ont mis au point une nouvelle génération de petites caméras UV qui utilisent la technologie Raspberry Pi. Le Raspberry Pi est un nano-ordinateur monocarte à processeur ARM de la taille d’une carte de crédit conçu par des professeurs du département informatique de l’université de Cambridge dans le cadre de la fondation Raspberry Pi. Le HVO a déjà utilisé la technologie Raspberry Pi dans d’autres applications.
Les nouvelles caméras – PiCams – seront testées fin juillet 2022 et pourront être utilisées comme outils de terrain portables ou installées comme stations permanentes dans le réseau de surveillance du HVO. En attendant le résultat des premiers tests, le HVO prévoit d’installer au moins une PiCam en permanence au sommet du Kilauea. Une deuxième PiCam sera soit portable, soit installée en permanence près du sommet du Mauna Loa.
Les mesures des émissions de SO2 peuvent également être dérivés des images des caméras UV. Les mesures traditionnelles des émissions de SO2 sont effectuées en se plaçant sous le panache avec un spectromètre UV monté sur une voiture. Il faut compter une dizaine de minutes, voire davantage, pour effectuer chaque mesure, et seulement 6 à 10 de ces mesures peuvent être réalisées chaque jour. À partir de 2012, le HVO a installé un réseau de spectromètres continus pour mesurer les émissions de SO2 du Kilauea avec une meilleure résolution temporelle que les mesures à partir de véhicules, mais le réseau ne fournit pas d’informations spatiales sur le panache de SO2.
Une fois que les PiCams seront prêtes à l’emploi,elles fourniront une vue bidimensionnelle du panache de SO2 du Kilauea, mais aussi une résolution temporelle élevée et une série temporelle continue de mesures du taux d’émission de SO2.
Les données continues fournies à propos des émissions de SO2 faciliteront l’étude du dégazage en relation avec d’autres ensembles de données continues, comme l’activité sismique et la déformation du sol. Cela donnera une meilleure idée du rôle du dégazage dans des événements éruptifs spécifiques, ce qui n’a pas toujours été facile à réaliser dans le passé. Des travaux semblables ont été effectués au cours de la dernière décennie sur de nombreux volcans à travers le monde, y compris sur le Kilauea où il a été démontré que l’activité sismique et les émissions de SO2 étaient liées au cours des variations de niveau du lac de lave en 2010. Le lac de lave actuel dans le cratère de l’Halema’uma’ u a une configuration et un comportement différents de ceux du lac de lave de 2008-2018. Le HVO est impatient de voir ce que les nouvelles PiCams révéleront sur le dégazage du nouveau lac.
Source : USGS, HVO.

———————————————-

In a new article, scientists at the Hawaiian Volcano Observatory (HVO) explain how they analyse the sulphur dioxide (SO2) plumes emittes by Kilauea

Observations of SO2 are essential to both monitoring and understanding eruptive activity. HVO relies heavily on measurements of SO2 emission rate which are critical for vog (volcanic air pollution) forecasts and can be used for calculating lava eruption rates.

HVO also relies heavily on cameras to document activity, including both visual and thermal cameras. A third type of camera—an ultraviolet (UV) camera—allows volcanologists to visualize otherwise invisible, SO2 plumes. SO2 absorbs ultraviolet light, which makes it visible in UV imagery even when it cannot be seen by standard cameras.

UV cameras have been used at Kilauea since 2010. Later, in 2013, a combined effort between the Cascades Volcano Observatory (CVO) and HVO resulted in the installation of an automated UV camera system at the summit of Kilauea. That camera station was removed in 2018 when it was threatened by ground cracking associated with summit caldera collapse events.

With lava and strong SO2 degassing having returned to Kilauea summit in late 2020, HVO and CVO are teaming up with colleagues at the University of Sheffield in the United Kingdom. The UK scientists have developed a new generation of small UV cameras that use Raspberry Pi technology. A Raspberry Pi is a small, low-cost computer, about the size of a credit card, and HVO has used them in other applications before.

The new cameras—PiCams—will be tested later this month and can be used as portable field tools or installed as permanent stations in HVO’s monitoring network. Pending the outcome of the initial tests, HVO plans to install at least one PiCam permanently at Kilauea’s summit. A second PiCam will either be kept portable or will eventually be permanently installed near Mauna Loa’s summit.

SO2 emission rates can also be derived from UV camera images. Traditional SO2 emission rate measurements are made by traversing beneath the plume with a UV spectrometer mounted on a car, so that each measurement takes ten or more minutes, with only 6–10 of those measurements made per day. Beginning in 2012, HVO pioneered a network of continuous spectrometers to measure Kilauea’s SO2 emission rate at a much higher temporal resolution than possible with vehicle-based measurements, but the network did not provide spatial information about the SO2 plume.

Once the PiCams are ready for use, they will provide both a 2-dimensional view of Kilauea’s SO2 degassing as well as a high-temporal resolution, continuous timeseries of SO2 emission rate measurements.

The continuous SO2 emission rate data will make it easier to study degassing in conjunction with other continuous datasets, like earthquake activity and ground deformation. This will give greater insight into the role of degassing in specific eruptive events, something that has not always been easy to do in the past. Similar work has been done over the past decade at many volcanoes around the world, including at Kilauea, where earthquake activity and SO2 emissions were shown to be linked during lava lake rise-fall events in 2010. The current lava lake in Halema‘uma‘u has a different configuration and set of behaviours from the 2008–18 lava lake, and HVO is eager to see what the new PiCams will reveal about the degassing of the new lake.

Source: USGS, HVO.

Panache émis par le lac de lave du Kilauea avant l’éruption de 2018 (Photos: C. Grandpey)