Piton de la Fournaise (Ile de la Réunion): Remplissage de la chambre magmatique? // Is the magma chamber filling up?

drapeau francaisDans un article intitulé « Le Piton de la Fournaise monte en pression », le Journal de l’Ile de la Réunion expliquait le 4 décembre que le volcan « affiche un comportement qui n’avait pas été observé depuis plusieurs années ». Au vu de deux pics de sismicité enregistrés en mars et avril 2014, l’équipe scientifique de l’Observatoire pense avoir la preuve d’une réalimentation en profondeur de la chambre magmatique qui s’était vidangée lors de la méga éruption de 2007.

Les dernières éruptions mineures (dont celle de juin dernier) ont mis en jeu des poches de magma superficielles, mais il se pourrait bien que cela change. C’est surtout au niveau des déformations de l’édifice volcanique que l’évolution est la plus remarquable. Alors que le sommet continue à se contracter lentement, on observe « les indices d’une mise en pression profonde (1000 mètres sous le niveau de la mer) affectant tout l’Enclos qui se déforme » et gonfle de manière faible mais continue.

Un autre facteur révélateur de cette évolution est la présence constante de SO2 dans les émissions gazeuses au sommet du Piton.

Selon les scientifiques, ces différents paramètres – sismiques, chimiques et de déformation – sont la preuve quasi certaine de la réalimentation magmatique en profondeur du système volcanique du Piton de la Fournaise.

Reste à savoir maintenant combien de temps prendra le remplissage. Selon la formule consacrée, « une éruption est possible dans les jours ou les semaines à venir ».

 ——————————————

drapeau anglaisIn an article entitled « Pressure is building up at the Piton de la Fournaise », the Journal de l’Ile de la Réunion explained on December 4th that the volcano « evinces a behaviour that had not been seen for several years. » Given two peaks of seismicity recorded in March and April 2014, the scientific team of the Observatory thinks it has the evidence of a deep recharge of the magma chamber that drained during the mega eruption of 2007.
The latest minor eruptions (including that of June 2014) involved shallow magma pockets, but this may soon change. The most striking phenomenon is the deformation of the volcanic edifice. While the summit continues to contract slowly, there is « evidence of an in-depth pressurization (1,000 metres below sea level) affecting the whole Enclos which is deforming » and inflating slowly and steadily.
Another factor that confirms this evolution is the constant presence of SO2 in the gas emissions in the summit area.
According to scientists, these parameters – seismic, chemical and deformation – are a clear proof of the magma recharge of the deep volcanic system of the Piton de la Fournaise.
Now the question is: How long will the recharge take? As the usual formula goes, « An eruption is possible within days or weeks. »

Dolomieu-blog

Aucune activité dans le Dolomieu ! (Webcam OVPF)

La chambre magmatique du Kilauea (Hawaii / Etats Unis)

drapeau francaisUne étude ayant pour titre « Preuves sismiques d’un réservoir magmatique dans la croûte terrestre sous l’Upper Rift Zone du Kilauea à Hawaii » a été récemment publiée dans la revue Geology. Elle a été effectuée par des scientifiques de l’Ecole Rosensteil (Université de Miami) qui ont découvert la présence d’une chambre magmatique profonde, jusqu’alors inconnue, sous le Kilauea. Il s’agit de la première observation géophysique prouvant que des chambres magmatiques profondes existent dans le système volcanique.

Les scientifiques ont analysé le déplacement des ondes sismiques afin de comprendre la structure interne du système volcanique. Avec ces données, ils ont mis au point le modèle en 3 dimensions d’une anomalie magmatique, à partir de la vitesse de déplacement des ondes. Ils ont pu ainsi déterminer la taille, la profondeur et la composition de la chambre magmatique dont le diamètre est estimé à plusieurs kilomètres, à une profondeur entre 8 et 11 kilomètres.

Jusqu’à présent, on savait que le Kilauea présentait de petites chambres magmatiques peu profondes. Cette étude démontre pour la première fois que de vastes chambres magmatiques existent sous le volcan, dans la croûte océanique profonde. L’étude montre également que cette chambre profonde recèle 10% de magma et 90% de roche. Ce réservoir magmatique sous le Kilauea ressemble à ceux observés sous la plupart des volcans situés sur les dorsales médio-océaniques.

De nombreux petits séismes sont enregistrés sur le Kilauea et l’attention particulière portée à l’activité sismique à proximité de cette chambre magmatique permettra de mieux comprendre l’origine de la lave qui accompagnera les futures éruptions.

Source : University of Miami’s Rosenstiel School.

—————————————–

drapeau anglaisA study, entitled « Seismic evidence for a crustal magma reservoir beneath the upper east rift zone of Kilauea volcano, Hawaii, » was recently published in the journal Geology. It was led by scientists at the University of Miami (UM) Rosenstiel School who uncovered a previously unknown magma chamber deep below Kilauea volcano. This is the first geophysical observation that large magma chambers exist in the deeper parts of the volcano system.

Scientists analyzed the seismic waves that travel through the volcano to understand the internal structure of the volcanic system. Using the seismic data, the researchers developed a three-dimensional velocity model of a magma anomaly to determine the size, depth and composition of the lava chamber, which is several kilometres in diameter and located at a depth of 8-11 km.

It was known before the study that Kilauea had small, shallow magma chambers. This study is the first geophysical observation that large magma chambers exist in the deep oceanic crust below. The study also showed that the deep chamber is composed of a mixture of 10-percent magma and 90-percent rock. The crustal magma reservoir below Kilauea is similar to those widely observed beneath volcanoes located at mid-ocean ridges.

Kilauea volcano produces many small earthquakes and paying particular attention to new seismic activity near this body will help better understand where future lava eruptions will come from.

Source : University of Miami’s Rosenstiel School.

Kilauea-PuuOo-2

Schéma simplifié montrant la relation supposée entre le sommet du Kilauea et l’East Rift Zone  (Source: HVO)

Eruptions super volcaniques

drapeau francaisUne équipe de géologues suisses, français et britanniques a tenté de comprendre ce qui peut provoquer les éruptions des super volcans.
Le résultat de leur étude, publié dans la revue Nature Geoscience , montre que la flottabilité et la poussée du magma constituent la principale explication du réveil de ces monstres de feu.
Afin d’essayer de comprendre pourquoi les super volcans comme Yellowstone sont si différents des volcans classiques, l’équipe a procédé à une modélisation informatique de l’activité volcanique en basant l’âge des éruptions sur un minéral témoin, le zircon, que l’on trouve dans les roches volcaniques.
Par ailleurs, une équipe de l’Institut Fédéral Suisse de Technologie de Zurich a utilisé une installation à rayons X de haute technologie (le synchrotron européen) pour étudier la densité de la roche en fusion qui sommeille sous les super volcans. La densité est un facteur important: Comme le magma dans la chambre est moins dense que la roche encaissante, il exerce une poussée sur le toit de cette même chambre.
Dans les volcans classiques, l’activité est déterminée par la taille de la chambre magmatique. Relativement faible en volume, elle est alimentée par des montées régulières de magma qui est expulsé ensuite en quantités modérées lorsque la pression devient trop élevée.
En revanche, s’agissant des super volcans, la chambre magmatique est trop volumineuse pour être mise sous pression par les seules injections de magma. Ce qui se passe, c’est qu’un magma moins dense et donc plus léger s’accumule régulièrement dans la chambre. Au début, cette dernière est assez forte pour résister à la pression, mais elle finit par céder et provoque une libération cataclysmale de matériaux.
L’équipe de géologues suisses, français et britanniques a calculé que l’éruption volcanique la plus intense impliquerait une libération de magma comprise entre 3500 et 7000 kilomètres cubes. C’est la première fois qu’un plafond est défini pour une telle éruption volcanique.
Les auteurs espèrent que les deux études fourniront des indications utiles quant à la fréquence des événements provoqués par les super volcans. A ce jour, on ne sait presque rien sur la vitesse de remplissage et l’explosion de la chambre magmatique. Seules 23 éruptions de ce type se sont produites au cours des 32 derniers millions d’années.

Source : Presse britannique.

Voici un lien vers un communiqué de presse du CNRS qui donne plus d’explications sur « les conditions d’éruption d’un super volcan » : http://www2.cnrs.fr/presse/communique/3375.htm

A noter que l’article paru dans GeoScience a provoqué un certain nombre de réactions. Un volcanologue néo-zélandais a fait remarquer que l’étude française sur les super volcans n’apportait rien de vraiment nouveau. Il a ajouté que la modélisation informatique avait ses limites. Comme il n’y avait pas d’humains pour assister aux éruptions des super volcans dans les temps préhistoriques, les scientifiques doivent se rabattre sur l’examen des matériaux expulsés pendant les éruptions pour trouver des indices.

drapeau anglaisA team of geologists from Switzerland, France and Britain has tried to understand what may cause super volcanoes to erupt.

The result of their study, published in the journal Nature Geoscience, shows that the buoyancy of magma is the key explanation as to why these monsters come to life

Seeking to understand why super volcanoes like Yellowstone can be so different from conventional ones, the team built a computer model of volcanic activity, basing the age of eruptions on a telltale mineral, zircon, found in volcanic rocks.

Separately, a team from the Swiss Federal Institute of Technology in Zurich used a hi-tech X-ray facility to study the density of molten rock below super-volcanoes. Density is important: As magma in the chamber is less dense than solid rock, it pushes on the roof of the chamber

In conventional volcanoes, activity is determined by the size of the magma chamber. Relatively small in volume, it is replenished by regular ascents of magma which is expelled in moderate amounts when the pressure becomes too high.

Differently, in super volcanoes, the magma chamber is too big to be pressurised by magma injections alone. What happens is that a buoyant kind of magma steadily accumulates in the chamber. At the beginning, the chamber is strong enough to resist the pressure but it eventually breaks apart in a cataclysmic discharge.

The Swiss-French-British team calculated that the maximum volcanic eruption would entail a release of between 3,500 and 7,000 cubic kilometres of magma; this is the first time an upper limit has ever been established for a volcano.

The authors hope the two studies will provide useful pointers as to the frequency of super-volcano events. Almost nothing is known about how fast these volcanoes recharge with magma and blow up. Only 23 such eruptions have occurred in the last 32 million years.

Source: British press.

The GeoScience article has triggered some reactions. Among them, a New Zealand volcanologist said the new French research on super-volcanoes does not offer anything new.

He added that computer modelling has a limited value, and as there were no humans around to see super-volcanoes erupting in prehistoric times, scientists have to examine the debris from eruptions for clues.

Yellowstone-blog

(Photo:  C. Grandpey)

La chambre magmatique de Yellowstone // Yellowstone’s magma chamber

drapeau francais   Des chercheurs de la Société Sismologique Américaine ont récemment déclaré au cours de leur réunion annuelle que la chambre magmatique qui sommeille sous Yellowstone est au moins 50% plus grande et plus homogène que le pensaient les scientifiques jusqu’à aujourd’hui.
La dernière éruption du Yellowstone s’est produite il y a 640 000 ans. Des éruptions moins spectaculaires ont eu lieu entre et après les grands événements ; la plus récente s’est produite il y a environ 70.000 ans. La chambre magmatique reconstituée au cours de la nouvelle étude alimentait ces petites éruptions et elle donne aujourd’hui naissance aux sources hydrothermales et aux geysers du parc. Elle est également à l’origine des épisodes de soulèvement que l’on observe de temps en temps dans le parc.
Réalisée par les départements de Géophysique et d’Informatique de l’Université de l’Utah, la première image « géoélectrique» à grande échelle du point chaud de Yellowstone révèle que, au lieu des deux grandes entités décrites jusqu’à présent, la chambre magmatique ressemble à une banane dont une extrémité bulbeuse se redresse vers le secteur NE du Parc National tandis que le reste du fruit à la forme tubulaire forme un angle vers la surface au SO. Il s’agit d’une chambre unique, d’une longueur d’environ 60 kilomètres, de 30 km de large, et de 5 à 12 km de profondeur. Le magma le plus superficiel, dans la partie nord-est, correspond également à l’activité hydrothermale la plus intense du parc.

Source: Live Science.

drapeau anglais   Researchers at the Seismological Society of America’s annual meeting recently reported that Yellowstone‘s magma chamber is at least 50% bigger and better connected than scientists thought.

The last Yellowstone eruption occurred 640,000 years ago. Smaller eruptions occurred in between and after the big blasts, most recently about 70,000 years ago.

The magma chamber seen in the new study fed these smaller eruptions and is the source of the park’s hydrothermal springs and geysers. It also creates the surface uplift that is observed from time to time in the park..

Made by University of Utah geophysicists and computer scientists, the first large-scale ‘geoelectric’ image of the Yellowstone hotspot revealed that instead of two big blobs described up to now, the Yellowstone magma chamber resembles a banana, with a bulbous end poking up toward the northeast corner of Yellowstone National Park, and the rest of the tubular fruit angling shallowly southwest. It’s a single connected chamber, about 60 kilometres long, 30 km wide, and 5 to 12 km deep.

The shallowest magma, in the northeast, also matches up with the park’s most intense hydrothermal activity.  

Source: Live Science.

Lone-Star-Geyser

Lone Star Geyser (Parc National de Yellowstone)  [Photo:  C. Grandpey]