La respiration de l’Etna // Mt Etna’s breathing

drapeau-francaisEn cliquant sur le lien ci-dessous, vous pourrez voir une animation proposée par la NASA qui représente la déformation de la surface de l’Etna entre 1992 et 2001. Cette déformation est due aux modifications de volume d’une chambre magmatique peu profonde située à environ 5 km sous le niveau de la mer. L’accumulation de magma dans cette chambre génère le gonflement du volcan, tandis que l’évacuation du magma au cours d’une éruption entraîne le dégonflement de l’édifice.

Les configurations spatiales et temporelles de déformation du sol ont été mesurées grâce à l’interférométrie radar qui génère plus de 200 interférogrammes de radar à synthèse d’ouverture (RSO) acquises par les satellites ERS-1 et ERS-2 de l’Agence Spatiale Européenne. (Un interférogramme est une carte des variations relatives de distance entre le satellite et la surface de la terre, exprimées en différences de phase. La technique interférométrique mesure la déformation du sol avec une précision de 2,8 cm.)
Les couleurs rouge et jaune dans la barre temporelle indiquent les niveaux significatifs d’activité éruptive ; le rouge indique une activité forte tandis que le jaune fait référence à une activité modérée. L’animation commence par une grande éruption latérale qui provoque un gonflement du volcan. Cette éruption, qui a pris fin le 30 mars 1993, a été suivie d’un cycle de 2 ans de dégonflement de l’édifice et une reprise de l’activité sommitale fin 1995. L’activité éruptive s’est intensifiée progressivement vers la fin des années 1990 et a culminé avec de d’importantes éruptions latérales en 2001 et 2002-2003. .

https://www.youtube.com/watch?v=yqAfgSQYmiw

—————————————-

drapeau-anglaisBy clicking on the link below, you will see a NASA animation that depicts ground deformation at Mount Etna Volcano between 1992 and 2001. The deformation results from changes in the volume of a shallow chamber centered approximately 5 km below sea level. The accumulation of magma in this chamber results in the inflation, or expansion, of the volcano, while the release of magma from the chamber results in deflation or contraction.

The spatial and temporal patterns of ground deformation was measured with radar interferometry, generating more than 200 interferograms from synthetic aperture radar (SAR) acquired by ESA’s ERS-1 and ERS-2 satellites. An interferogram is a map of the relative changes in the distance between the satellite and surface of the earth, expressed as differences in phase. The interferometric technique measures ground deformation with a precision of 2.8 cm.

The red and yellow colors within the sliding time bar indicate significant levels of eruption activity, with red indicating strong activity and yellow signifying moderate activity. The animation begins with a large flank eruption in progress, causing deflation of the volcano. This eruption, which ended in March 30, 1993, was followed by a 2-year cycle of inflation and a resumption of summit activity in late 1995. Eruption activity progressively increased in magnitude through the late 1990’s and culminated with large flank eruptions in 2001 and 2002-2003.  .

https://www.youtube.com/watch?v=yqAfgSQYmiw

Etna image

Source: NASA

 

L’InSAR et le Kilauea (Hawaii)

drapeau-francaisL’interférométrie radar à synthèse d’ouverture (InSAR) est en train de devenir un élément clé en volcanologie. J’ai déjà écrit plusieurs notes à propos de cette nouvelle technologie sur ce blog entre 2013 et 2015.
L’InSAR a récemment prouvé son efficacité dans la compréhension des différents épisodes d’intrusion magmatique dans la caldeira sud du Kilauea au cours du printemps 2015. En avril, le réservoir superficiel sous la caldeira du Kilauea a commencé à gonfler rapidement, provoquant une hausse du niveau du lac de lave et son débordement sur le plancher du cratère de l’Halema’uma’u.
Le 11 mai, les inclinomètres ont commencé à enregistrer une rapide phase de dégonflement, accompagnée de la baisse de niveau du lac de lave et d’une augmentation de la sismicité dans la caldeira sud, que ce soit en fréquence ou en magnitude des événements. En une seule journée, on a pu parfaitement observer l’inflation dans la caldeira sud sur le réseau de capteurs GPS ainsi que sur les inclinomètres.
Les images InSAR illustrant le début de cet événement montrent dans le moindre détail le soulèvement associé à l’inflation initiale et révèlent en même temps la complexité de la forme du réservoir magmatique. Les images traduisent également la transition vers la déflation de l’Halema’uma’u et l’inflation de la caldeira sud.

INSAR

(Source: HVO)

L’interférogramme en arc-en-ciel ci-dessus montre parfaitement la forme et l’importance du soulèvement au cours de cet événement (entre le 11 avril et le 22 mai). L’image révèle que le soulèvement coïncide avec l’emplacement d’un réservoir magmatique – déjà identifié par les scientifiques – sous la caldeira sud. C’est aussi pour les chercheurs du HVO la première preuve indiquant un transfert de magma rapide entre les réservoirs magmatiques.
Les couleurs de l’arc-en-ciel représentent le changement de distance entre le sol et le satellite InSAR entre deux orbites effectuées par ce dernier. Chaque cycle de couleurs, du magenta au bleu, indique un déplacement égal à la moitié de la longueur d’onde du radar satellitaire. Le motif se répète, et en comptant tous les arcs-en-ciel, on obtient la totalité du déplacement
Au cours des deux dernières décennies, l’augmentation du nombre de satellites disponibles a amélioré les possibilités offertes par l’InSAR aux chercheurs du HVO. Ils disposent désormais d’une plus grande variété de longueurs d’ondes. Les ondes courtes permettent d’améliorer la résolution, tandis que les ondes plus longues autorisent une meilleure pénétration à travers la végétation. Le HVO utilise les données fournies par de nombreux satellites InSAR pour étudier les mouvements de sol sur les volcans d’Hawaï, y compris les satellites lancés par l’Agence Spatiale Européenne, le Canada, l’Allemagne et le Japon.
Les États-Unis s’apprêtent à lancer leur premier satellite InSAR. En 2014, la NASA a annoncé un projet conjoint avec l’Indian Space Research Organization visant à construire et lancer un satellite InSAR multi-longueurs d’ondes spécifiquement conçu pour l’étude des risques naturels. Le lancement du satellite est prévu pour 2020.
Source: HVO.

————————————–

drapeau-anglaisInterferometric Synthetic Aperture Radar (InSAR) is becoming a key tool in volcanology. I have already written several notes about this new technology on this weblog between 2013 and 2015.
InSAR recently proved important in understanding the various episodes of Kilauea’s south caldera intrusion during spring 2015. In April, the shallow reservoir beneath the Kilauea caldera began to rapidly inflate, causing the lava lake to rise to the point where it overflowed onto the floor of Halema’uma’u Crater.
On May 11th, tiltmeters began recording rapid deflation, the lava lake level dropped and earthquakes in the south caldera increased in rate and magnitude. Within a day, inflation in the south caldera could clearly be seen on the network of continuous GPS instruments and tiltmeters.
InSAR images spanning the beginning of this event show the uplift associated with the initial inflation in great detail, revealing a complexity to the shape of the reservoir. The images also capture the transition to deflation at Halema’uma’u and south caldera inflation.
As shown in the accompanying image (see above), the rainbow pattern seen in the interferogram beautifully captured the shape and extent of ground uplift during this event (from April 11th to May 22nd). This image shows that the uplift coincides with the location of a known south caldera storage reservoir. This is the first evidence that HVO scientists have ever had suggesting rapid magma transfer between storage reservoirs.
The rainbow colours represent the change in distance between the ground and the satellite in the time between two orbits of the InSAR satellite. Each cycle of colours, from magenta to blue indicates motion equal to half the satellite’s radar’s wavelength. The pattern repeats and by counting up all the rainbows, you get the total amount of motion.
Over the past two decades, the increasing number of available satellites has improved HVO’s InSAR capabilities by providing a variety of wavelengths that allow for improved resolution at short wavelengths and better penetration through vegetation at longer wavelengths. HVO has used data from many different InSAR satellites to investigate motion on Hawaii’s volcanoes, including satellites launched by the European Space Agency, Canada, Germany and Japan.
The United States is working toward launching its first InSAR satellite. In 2014, NASA announced a joint project with the Indian Space Research Organization to build and launch a multi-wavelength InSAR satellite specifically designed for studying natural hazards. The project is scheduled for a 2020 launch.
Source : HVO.

L’interférométrie radar au service des volcans // InSAR and volcanoes

drapeau francaisAvec les progrès scientifiques, de nouvelles technologies sont utilisées pour essayer de comprendre le comportement des volcans. L’une des plus populaires est l’interférométrie radar à synthèse d’ouverture (InSAR). Elle est applicable à de multiples domaines comme l’évolution des glaciers, un domaine très sensible avec le réchauffement climatique. Le radar enregistre deux images ou plus de la même région à des moments différents. En comparant les images, il est alors possible de détecter tous les changements susceptibles de s’être produits dans l’intervalle. L’interférométrie peut être réalisée par un seul satellite ou par deux satellites évoluant en tandem sur la même orbite.

Une enseignante du Département des Sciences de La Terre et de l’Institut de Cyberscience de l’Université de Pennsylvanie (Penn State) étudie le Kilauea (Hawaii) depuis plusieurs années et elle est sur le point de commencer une nouvelle étude en utilisant l’InSAR.

Le Kilauea est en éruption depuis 32 ans et il y a donc une grande quantité de magma qui monte des profondeurs. Il sera intéressant d’étudier quelles sont les différentes sources magmatiques ainsi que les relations qui peuvent exister entre elles.

L’un des éléments clés pour répondre à cette question se trouve dans les déformations qui se produisent à la surface du volcan. En effet, les déformations en surface sont forcément provoquées par des mouvements en profondeur.

Pour commencer son étude, l’universitaire pennsylvanienne va rassembler les données satellitaires qui se trouvent dans les archives. Elle va examiner les déformations de surface qui ont précédé et suivi un événement naturel (séisme ou éruption) sur le Kilauea. Elle utilisera ensuite ces données pour créer deux images : une avant l’événement naturel et une après. Ainsi, elle pourra voir dans quelle mesure l’événement naturel a modifié la surface du sol. Il est possible de combiner les deux images pour créer un interférogramme, autrement dit une image InSAR beaucoup plus globale de la situation. Cette image utilise la couleur pour traduire les mouvements du sol, comme on peut le voir dans l’image au bas du texte.

Les images InSar peuvent être créées à partir de deux images, mais la chercheuse a également recours à une approche multi séries baptisée Multi-Temporal (MT) InSAR quand un nombre suffisant d’images radar est disponible. Cette approche qui bénéficie d’images multiples est plus précise, mais elle requiert beaucoup plus de données et aussi une puissance informatique plus importante.

Après avoir créé les images InSAR, la scientifique pourra commencer à les utiliser pour prévoir le comportement en profondeur du Kilauea. Elle utilisera également une technique appelée modélisation inverse pour étudier la ou les causes des déformations.

Les mouvements du magma ne sont pas le seul facteur susceptible d’affecter le comportement du Kilauea. Le flanc sud du volcan a tendance à avancer, peut-être à cause du système d’alimentation et de l’activité du volcan. Même si le flanc sud avance vers l’océan à raison de 6 à 10 centimètres par an, il faut savoir que des séismes ont entraîné dans le passé des déplacements encore plus importants et même déclenché des tsunamis.

Des technologies comme l’InSAR sont très intéressantes car elles permettent de faire des recherches sans avoir  l’obligation d’être sur le terrain.

Source: Penn State

 —————————————————-

drapeau anglaisWith scientific progress, new technologies are being used to try and understand the behaviour of volcanoes. One of the most popular is called Interferometric Synthetic Aperture Radar (InSAR) which is applicable to multiple domains like the glaciers which are very sensitive to global warming. The radar records two images or more of the same region at the different moments. By comparing the images, it is then possible to detect all the changes susceptible to have occurred in the meantime. InSAR can performed by a single satellite or by two satellites evolving in tandem on the same orbit.

An assistant professor in the Department of Geosciences and the Institute for CyberScience at the Pennsylvania State University (Penn State) has been studying Kilauea volcano for several years and is getting ready to start a new project using InSAR.

The volcano has been erupting for 32 years, so obviously there’s a lot of magma coming from below and it would be interesting to know where all these magma sources are and how they relate to each other. One of the keys to answering this question is found in the deformations happening on the surface of Kilauea. Indeed, a change of deformation on the volcano’s exterior implies something that causes the change much deeper below the surface.

To begin the process, the Pennsylvanian researcher gathers satellite data from archived databases. She looks for information about changes in elevation from before and after a natural hazard event – an eruption or earthquake, for example. She then uses this data to create two images: one from before the natural event and one from after. This shows how the event changed the ground’s surface. The two pictures can then be combined to create a single, much more comprehensive InSAR image called an interferogram, which uses colour to represent movement. (see example with the image below)

While InSAR images can certainly be created from two images, she also uses a time-series approach called Multi-Temporal (MT)-InSAR when enough radar images are available. This technique uses multiple images instead of two. This approach is much more accurate, but it also requires much more data and computing power

After creating the InSAR images, the researcher can begin to use them to predict what might be happening underneath Kilauea. She uses an approach called inverse modeling to estimate what caused the deformation.

Magma processes aren’t the only things that could be affecting Kilauea’s behaviour. The southern flank of the volcano is moving away from the island, and this could also be influencing the volcano’s magma plumbing system and activity. Although the flank is slipping seaward at an average speed of 6 to 10 centimetres a year, earthquakes in the past have caused more drastic movement and have even generated tsunamis.

Remote-sensing technologies like InSAR are important because they allow researchers to do important research without physically being on location.

Source: Penn State.

INSAR-blog

Interférogramme InSAR couvrant la période du 5 mai au 20 juin 2007. Elle montre les déformations du sol provoquées par le séisme du 24 mai 2007 sur le Kilauea.  (Source:  Penn State)

Interférométrie radar et prévision volcanique / Radar interferometry and volcanic prediction

drapeau francais.jpgUn article publié dans la revue Geophysical Research Letters indique que deux scientifiques de l’Université de Miami affirment pouvoir détecter les signes d’une éruption imminente en analysant des images satellites.

Leurs conclusions s’appuient sur une étude des volcans actifs de l’arc volcanique de la Sonde à l’aide de l’interférométrie radar à ouverture synthétique (InSAR). Grâce à cette technologie, ils ont découvert des preuves que plusieurs volcans gonflaient avant leur éruption, probablement sous l’effet de la poussée du magma.

L’étude s’appuie sur quelque 800 images InSAR montrant 79 volcans entre 2006 et 2009. Les chercheurs ont repéré des signes de gonflement sur six d’entre eux et trois édifices sont entrés en éruption au terme de la période de surveillance.

Il serait toutefois hasardeux de généraliser les conclusions des scientifiques à l’ensemble des volcans de la planète. Ils font d’ailleurs remarquer dans l’article que leurs observations concernent des volcans à chambre magmatique peu profonde (moins de 3 km).

L’interférométrie radar à usage volcanique n’est pas vraiment récente. Je me souviens d’une conférence il y a une dizaine d’années au cours de laquelle un scientifique vantaient les avantages de cette technologie qui a toutefois ses limites et ne saurait être appliquée seule à des volcans plus complexes, à chambre magmatique plus profonde.

On pourrait citer plusieurs volcans dont le seul gonflement ne suffit pas à annoncer une éruption : Yellowstone, Mauna Loa, Kilauea. On sait que Yellowstone peut gonfler périodiquement et dégonfler ensuite, sans autre activité visible. On sait que le Mauna Loa a gonflé récemment mais que l’éruption de 1984 reste la dernière de la série. La détection par satellite des successions d’épisodes de gonflement et de dégonflement du Kilauea (déjà en éruption) par satellite ne serait pas d’une grande utilité.

D’autres outils sont nécessaires pour essayer de comprendre le comportement de ces volcans et savoir si une éruption est en préparation. S’agissant des satellites, la détection d’anomalies thermiques est très utile pour des volcans isolés comme ceux du Kamchatka. Au sol, l’analyse classique des paramètres sismiques et chimiques reste cruciale et c’est souvent elle qui donne les meilleurs résultats.

La volcanologie avance, mais à petits pas. Notre capacité à prévoir les éruptions reste bien limitée !

Source : The RedOrbit.com – Your Universe Online.

————————————————-

drapeau anglais.jpgIn a new report published in the journal Geophysical Research Letters, two scientists from the University of Miami showed they may now be able to detect signs of an impending volcanic eruption by analyzing satellite imagery.

Using Interferometric Synthetic Aperture Radar (InSAR) over the active volcanoes in Indonesia’s west Sunda arc, the researchers uncovered evidence that showed the inflation of several volcanoes prior to their eruption, likely the result of rising magma.

The 800 InSAR images of 79 volcanoes used in the study were taken between 2006 and 2009. The scientists were able to detect signs of inflation at six volcanic centres, three of which erupted after the surveillance period.

However, one should be careful not to extend the scientists’ conclusions to all the volcanoes of the world. By the way, they say that their observations concerned volcanoes with shallow magma chambers (less than 3 km).

The use of radar interferometry on volcanoes is not recent. I can remember a conference some ten years ago with a scientist boasting the advantages of this technology which cannot really be used on complex volcanoes with deeper magma chambers.

One could cite the examples of volcanoes whose sole inflation does not mean that an eruption is about to occur: Yellowstone, Mauna Loa or Kilauea. It is well known that Yellowstone may periodically inflate and then deflate with no other visible activity. Mauna Loa recently inflated but the 1984 eruption is still the last one of the series. The satellite detection of the rapid succession of D/I events on Kilauea (which is erupting) would not be very useful.

More tools are necessary to try and understand the eruptive behaviour of these volcanoes. As fara s satellites are concerned, the detection of thermal anomalies is very useful on isolated volcanoes like those of Kamchatka. On the ground, conventional tools to analyse seismic or chemical parameters are still crucial. They often give the best results.

Volcanology is making slow progress and our ability to predict eruptions is still very limited!

Source : The RedOrbit.com – Your Universe Online.

radar interferometry,interférométrie radar,volcanic prediction,volcans,volcanoes

Le Vieux Fifèle, dans le Parc de Yellowstone (Photo: C. Grandpey)