Et si le Gulf Stream s’arrêtait ? // What if the Gulf Sream stopped ?

Une nouvelle étude publiée dans la revue Nature Geoscience envoie un avertissement et explique que le Gulf Stream, courant de l’Océan Atlantique qui joue un rôle essentiel dans la redistribution de la chaleur dans le système climatique de notre planète, se déplace maintenant plus lentement qu’auparavant.

Les scientifiques pensent que ce ralentissement est en partie lié au réchauffement climatique car la fonte de la glace dans l’Arctique modifie l’équilibre des eaux dans le nord du globe. Son impact peut être observé dans les tempêtes, les vagues de chaleur et l’élévation du niveau de la mer.

Le Gulf Stream fait partie intégrante de la circulation océanique méridienne dans l’Atlantique – Atlantic Meridional Overturning Circulation, ou AMOC. L’auteur de l’article paru dans Yahoo News nous rappelle que le phénomène a été porté à l’attention du public par le film « The Day After Tomorrow » – « Le Jour d’Après » – sorti en 2004 dans lequel le courant océanique s’arrête brusquement, provoquant d’effroyables tempêtes dans le monde, une super tornade à Los Angeles et un mur d’eau qui vient s’écraser sur New York. Il faut toutefois ajouter que si le Gulf Stream devait s’arrêter, le résultat ne serait pas aussi soudain ; les impacts s’étaleraient probablement sur des années, voire des décennies, mais seraient certainement dévastateurs pour notre planète.

Des recherches récentes ont montré que la circulation thermohaline a ralenti d’au moins 15% depuis 1950. Ce ralentissement a probablement déjà un impact sur les systèmes terrestres et on estime que d’ici la fin du siècle la circulation pourrait ralentir de 34% à 45% si la hausse des températures persiste à l’échelle de la planète. Les scientifiques craignent qu’un tel ralentissement fasse atteindre un point de basculement qui rendra la situation irréversible.

La circulation thermohaline dans l’Atlantique est facile à expliquer. Comme l’équateur reçoit beaucoup plus de lumière directe du soleil que les pôles qui sont plus froids, la chaleur s’accumule sous les tropiques. Dans un effort d’équilibre, la Terre envoie cette chaleur vers le nord depuis les tropiques et envoie du froid vers le sud depuis les pôles. C’est comme cela que le vent souffle et que les tempêtes se forment. La plus grande partie de cette chaleur est redistribuée par l’atmosphère, mais le reste est déplacé plus lentement par les océans par le biais de la circulation thermohaline, cet ensemble de courants qui relient les océans du monde. (voir carte ci-dessous)

Grâce à la recherche scientifique, on sait que l’AMOC est le moteur qui pilote cette circulation globale. Il déplace l’eau avec un débit 100 fois supérieur à celui de l’Amazone. Dans l’AMOC, une bande étroite d’eau chaude et salée dans les tropiques près de la Floride – le Gulf Stream – est transportée vers le nord, près de la surface, dans l’Atlantique Nord. Lorsqu’il atteint la région du Groenland, le Gulf Stream se refroidit suffisamment pour devenir plus dense et plus lourd que les eaux environnantes, de sorte qu’il s’enfonce dans les profondeurs océaniques. Cette eau froide est ensuite transportée vers le sud par des courants profonds.

La fonte de la glace et l’afflux d’eau douce qui en résulte dans l’Atlantique Nord constituent un facteur important qui contrôle la vitesse de l’AMOC. En effet, l’eau douce est moins salée, donc moins dense, que l’eau de mer, et elle ne coule pas aussi facilement. S‘il y a trop d’eau douce, l’AMOC perd de son énergie. Selon les scientifiques, c’est probablement ce qui se passe à l’heure actuelle. La cause se trouve dans l’Arctique où la glace fond plus vite à cause du réchauffement climatique d’origine anthropique..

Afin d’évaluer le ralentissement spectaculaire de l’AMOC, les chercheurs ont compilé des données fournies par la nature comme les sédiments océaniques et les carottes de glace remontant à plus de 1000 ans. Ils ont pu ainsi reconstruire l’historique de l’AMOC.

La mutualisation de trois types différents de données a été mise en œuvre pour obtenir des informations sur l’histoire des courants océaniques: 1) les modèles de température dans l’Océan Atlantique, 2) les propriétés de la masse de l’eau sous la surface de l’océan et 3) la taille des grains des sédiments des grands fonds datant de 1600 ans.

Bien que chaque élément de ces données ne soit pas une représentation parfaite de l’évolution de l’AMOC, leur mutualisation a donné une bonne image de la circulation océanique méridienne dans l’Atlantique.

Les résultats de l’étude montrent que l’AMOC a été relativement stable jusqu’à la fin du 19ème siècle. Le premier changement important est intervenu au milieu des années 1800, après le Petit Age Glaciaire entre les années 1400 et 1800.

A la fin du Petit Age Glaciaire vers 1850, les courants océaniques ont commencé à s’affaiblir, avec un deuxième déclin plus marqué après le milieu du 20ème siècle, probablement en raison du réchauffement climatique provoqué par la combustion de combustibles fossiles. Neuf des 11 ensembles de données utilisés dans l’étude ont montré que l’affaiblissement de l’AMOC au 20ème siècle est statistiquement significatif, ce qui prouve que le ralentissement est sans précédent à l’ère moderne.

L’affaiblissement de l’AMOC se répercute déjà sur le système climatique des deux côtés de l’Atlantique. Du côté américain, on observe une augmentation du niveau de la mer dans des lieux comme New York et Boston. En Europe, les effets se font sentir sur les conditions météorologiques avec modification de la trajectoire des tempêtes venant de l’Atlantique, ainsi que les vagues de chaleur.

Selon la dernière étude, ces impacts continueront probablement de s’aggraver avec le réchauffement à venir de la planète, la poursuite du ralentissement de l’AMOC, avec des événements météorologiques plus extrêmes comme un changement de trajectoire des tempêtes hivernales au large de l’Atlantique et des tempêtes potentiellement plus intenses. .

Les auteurs de l’étude pensent que si nous restons en dessous de 2 degrés Celsius de réchauffement climatique, il semble peu probable que l’AMOC s’arrête définitivement. En revanche, si nous atteignons 3 ou 4 degrés de réchauffement, les chances d’arrêt augmenteront. Si l’AMOC s’arrête, il est probable que l’hémisphère nord se refroidira en raison d’une diminution significative de l’arrivée de chaleur tropicale poussée vers le nord.

Toutefois, en l’état actuel des choses, la Science ne sait pas vraiment ce qui se passera si le Gulf Stream cesse de fonctionner.

Source : Yahoo News.

———————————————-

 A new study published in the journal Nature Geoscience is sending a warning and explains that the Gulf Stream, an influential current system in the Atlantic Ocean, which plays a vital role in redistributing heat throughout our planet’s climate system, is now moving more slowly than before.

Scientists believe that part of this slowing is directly related to global warming, as the melting of the ice at the poles and on the glaciers alters the balance in northern waters. Its impact may be seen in storms, heat waves and sea-level rise.

The Gulf Stream is an integral part of the Atlantic Meridional Overturning Circulation, or AMOC. The author of the article released in Yahoo News reminds us that the phenomenon was made famous in the 2004 film « The Day After Tomorrow, » in which the ocean current abruptly stops, causing immense killer storms around the globe, a super tornado in Los Angeles and a wall of water smashing into New York City. However, if the Gulf Stream were to eventually stop moving, the result would not be sudden, but over years and decades the impacts would certainly be devastating for our planet.

Recent research has shown that the circulation has slowed down by at least 15% since 1950. This slowdown is undoubtedly already having an impact on Earth systems, and by the end of the century it is estimated the circulation may slow by 34% to 45% if we continue to heat the planet. Scientists fear that kind of slowdown would put us dangerously close to tipping points.

Because the equator receives a lot more direct sunlight than the colder poles, heat builds up in the tropics. In an effort to reach balance, the Earth sends this heat northward from the tropics and sends cold south from the poles. This is what causes the wind to blow and storms to form.

The largest part of that heat is redistributed by the atmosphere. But the rest is more slowly moved by the oceans in what is called the Global Ocean Conveyor Belt, a worldwide system of currents connecting the world’s oceans. (see map below)

Through years of scientific research, it has become clear that the AMOC is the engine that drives its operation. It moves water at 100 times the flow of the Amazon river.

In the AMOC, a narrow band of warm, salty water in the tropics near Florida – the Gulf Stream – is carried northward near the surface into the North Atlantic. When it reaches the Greenland region, it cools sufficiently enough to become more dense and heavier than the surrounding waters, at which point it sinks. That cold water is then carried southward in deep water currents.

One important factor that controls the speed of the AMOC is the melting of glacial ice and the resulting influx of fresh water into the North Atlantic. Indeed, fresh water is less salty, and therefore less dense, than sea water, and it does not sink as readily. Too much fresh water means the AMOC loses the sinking part of its engine and thus loses its momentum.

This is what scientists believe is happening now as ice in the Arctic is melting at an accelerating pace due to human-caused climate change.

In order to ascertain just how unprecedented the recent slowing of the AMOC is, the research team compiled proxy data taken mainly from nature’s archives like ocean sediments and ice cores, reaching back over 1,000 years. This helped them reconstruct the flow history of the AMOC.

The team used a combination of three different types of data to obtain information about the history of the ocean currents: temperature patterns in the Atlantic Ocean, subsurface water mass properties, and deep-sea sediment grain sizes, dating back 1,600 years.

While each individual piece of proxy data is not a perfect representation of the AMOC evolution, the combination of them revealed a robust picture of the overturning circulation.

The study results suggest that the AMOC has been relatively stable until the late 19th century. The first significant change happened in the mid 1800s, after the Little Ice Age which spanned from the 1400s to the 1800s.

With the end of the Little Ice Age in about 1850, the ocean currents began to decline, with a second, more drastic decline since the mid-20th century, likely due to global warming from the burning of fossil fuels. Nine of the 11 data-sets used in the study showed that the 20th century AMOC weakening is statistically significant, which provides evidence that the slowdown is unprecedented in the modern era.

The weakening of the AMOC is already reverberating in the climate system on both sides of the Atlantic. On the U.S. side, one observes an enhanced sea level rise in places like New York and Boston. In Europe, evidence shows there are impacts to weather patterns, such as the track of storms coming off the Atlantic as well as heat waves.

According to the latest study, these impacts will likely continue to get worse as the Earth continues to warm and the AMOC slows down even further, with more extreme weather events like a change of the winter storm track coming off the Atlantic and potentially more intense storms.

The authors of the study think that if we stay below 2 degrees Celsius of global warming it seems unlikely that the AMOC will stop, but if we hit 3 or 4 degrees of warming the chances for the stopping rise. If the AMOC halts, it is likely the Northern Hemisphere ill cool due to a significant decrease in tropical heat being pushed northward. But science does not yet know exactly what would happen if the Gulf Stream stopped moving..

Source: Yahoo News.

Source : NOAA

Vers une perturbation de la circulation thermohaline ? // Toward a disruption of the AMOC ?

Bien que complexe, la circulation thermohaline, autrement dit le mécanisme qui gère les courants marins, est essentielle à la vie sur notre planète. Ce sont en grande partie les courants marins qui, par leur influence, gèrent le climat des zones où nous vivons. Il ne faudrait pas oublier que les océans couvrent 71 % de la surface du globe. Il s‘ensuit qu’une modification de la circulation océanique aura forcément des conséquences sur toute la planète et particulièrement dans l’Atlantique Nord, là où les courants marins prennent naissance.

Ainsi, le Gulf Stream prend naissance dans le Golfe du Mexique pour ensuite se diriger vers l’Angleterre. On lui attribue les hivers peu rigoureux en Europe, contrairement à ceux que subit l’Amérique du Nord. Peu de gens savent que l’arrivée du Gulf Stream près des côtes occidentales de l’Europe constitue le point de départ des grands courants qui sillonnent la planète. Lorsque le Gulf Stream passe entre la Scandinavie et le Groenland, il côtoie les eaux froides de l’Arctique et se refroidit considérablement, au point que la mer se recouvre de glace.

L’eau sous forme de glace n’a pas la capacité de contenir du sel. En passant au stade de glace, cette eau rejette le sel qu’elle contenait. On se retrouve donc en présence d’une eau froide qui contient plus de sel que les eaux avoisinantes. Comme c’est le cas dans l’atmosphère où l’air chaud monte et l’air froid descend, dans l’océan l’eau chaude reste à la surface et l’eau froide coule vers le fond. De plus, cette eau contient beaucoup plus de sel et est donc plus dense. La conséquence est que son mouvement vers le fond est accéléré.

Cette eau froide et très salée longe la dorsale atlantique jusqu’au sud des Amériques avant de glisser vers l’Océan Pacifique, où elle se réchauffera et remonte donc plus près de la surface avant de continuer sa course vers son point de départ. On se rend compte que cette circulation thermohaline est due aux différences de températures et de salinité des eaux du globe.

Les océanographes ont remarqué depuis quelques années que la circulation thermohaline s’est modifiée dans l’Arctique. Cela a commencé avec les premières observations du ralentissement du courant-jet polaire dans les années 1990. La chose inquiétante, c’est que ce ralentissement est devenu la norme depuis 2005 et qu’il est directement lié au réchauffement de l’Arctique. Ce réchauffement est responsable de la disparition de la vieille glace au profit d’une glace plus jeune et moins épaisse.

La disparition de la glace de mer en Arctique est une catastrophe par son effet sur l’albédo. En effet, les rayons du soleil ne sont plus réfléchis vers l’espace, et ils sont au contraire absorbés par l’océan. Les scientifiques ont mesuré une température de l’eau atteignant par endroits 11°C en été, ce qui est tout à fait anormal et correspond aux observations climatiques qui montrent que l’Arctique se réchauffe deux fois plus vite que le reste de la planète. De ce fait, les secteurs les moins profonds, comme le bord des côtes vont perdre leur pergélisol et libérer de grandes quantités de méthane. Comme je l’ai écrit à plusieurs reprises, le méthane (CH4) est un gaz à effet de serre 28 fois plus puissant que le CO2, même si sa durée de vie est plus brève. Néanmoins, le méthane peut faire grimper la température globale de 0,6°C.

Comme les eaux de l’Arctique se réchauffent, le point de départ de la circulation thermohaline s’est également réchauffé. On a longtemps cru que si l’Arctique fondait, l’apport d’eau froide et non salée dans l’Atlantique Nord ralentirait le Gulf Stream avec des hivers beaucoup plus rigoureux en Europe. La vérité, c’est que le réchauffement de la planète est arrivé à un tel point que toutes les régions vont se réchauffer. Les côtes occidentales de l’Europe, qui bénéficient de l’influence du Gulf Stream, vont se réchauffer moins vite à cause de l’apport d’eau froide dans l’Atlantique Nord, mais elles vont se réchauffer quand même.

Dans la mesure où le Gulf Stream évacue naturellement la chaleur accumulée aux tropiques vers le pôle et que ce courant sera ralenti par la fonte de l’Arctique, la chaleur va s’accumuler plus vite dans l’Atlantique au niveau des tropiques, ce qui risque fort de favoriser le développement d’ouragans majeurs. Si l’on associe un courant chaud qui amorce plus difficilement la circulation thermohaline d’une part, et la plus grande facilité à accumuler de la chaleur dans la zone de formation des cyclones tropicaux atlantiques d’autre part, on arrive à une situation qui met en danger des centaines de millions de personnes.

Source : Météo Media.

——————————————–

Although complex, the thermohaline circulation – or AMOC (Atlantic Meridional Overturning Circulation) – is the mechanism that manages ocean currents, and that is essential to life on our planet. It is largely the ocean currents that, through their influence, manage the climate of the regions where we live. It should not be forgotten that the oceans cover 71% of the Earth’s surface. It follows that a change in ocean circulation will inevitably have consequences on the whole planet and particularly in the North Atlantic, where sea currents originate.
Thus, the Gulf Stream originates in the Gulf of Mexico and then moves towards England. It is rhe cause of mild winters in Europe, unlike those in North America. Few people know that the arrival of the Gulf Stream near the western coasts of Europe is the starting point for the great currents that crisscross the planet. When the Gulf Stream passes between Scandinavia and Greenland, it coasts with the cold Arctic waters and cools considerably, to the point that the sea becomes covered with ice.
Water in the form of ice does not have the capacity to contain salt. Passing the ice stage, this water rejects the salt it contained. We therefore find ourselves in the presence of cold water which contains more salt than the surrounding waters. As is the case in the atmosphere where warm air rises and cold air sinks, in the ocean warm water stays on the surface and cold water sinks to the bottom. In addition, this water contains much more salt and is therefore more dense. The consequence is that its movement towards the bottom is accelerated.
This cold and very salty water runs along the Atlantic ridge to the southern Americas before sliding towards the Pacific Ocean, where it will warm up and therefore rise closer to the surface before continuing its course towards its starting point. We realize that this thermohaline circulation is due to the differences in temperature and salinity of the world’s waters.
Oceanographers have noticed in recent years that thermohaline circulation has changed in the Arctic. It started with the first observations of the polar jet slowdown in the 1990s. The worrying thing is that this slowdown has become the norm since 2005 and is directly linked to the warming of the Arctic. This warming is responsible for the disappearance of old ice in favour of younger, thinner ice.
The disappearance of sea ice in the Arctic is a disaster because of its effect on the albedo. Indeed, the sun’s rays are no longer reflected back to space, and are instead absorbed by the ocean. Scientists have measured a water temperature in places as high as 11°C in summer, which is completely anomalous and corresponds to climatic observations which show that the Arctic is warming twice as fast as the rest of the planet. As a result, the shallower areas, such as the coastline, will lose their permafrost and release large amounts of methane. As I have written several times, methane (CH4) is a greenhouse gas 28 times more powerful than CO2, even if its lifespan is shorter. However, methane can cause the global temperature to rise 0.6°C.
As the Arctic waters warm, the starting point of the thermohaline circulation has also warmed. It has long been believed that if the Arctic melted, the flow of cold, unsalted water to the North Atlantic would slow the Gulf Stream with much harsher winters in Europe. The truth is, global warming has come to such an extent that all regions are going to get warmer. The western coasts of Europe, which benefit from the influence of the Gulf Stream, will warm up less quickly due to the cold water coming into the North Atlantic, but they will warm anyway.
Insofar as the Gulf Stream naturally evacuates the heat accumulated in the tropics towards the pole and that this current will be slowed down by the melting of the Arctic, the heat will accumulate more quickly in the Atlantic at the level of the tropics, with a strong risk of favouring the development of major hurricanes. If we associate a hot current which is more difficult to initiate the thermohaline circulation on the one hand, and the greater facility to accumulate heat in the zone of formation of Atlantic tropical cyclones on the other hand, we arrive at a situation which puts hundreds of millions of people at risk.
Source: Météo Media.

Schéma montrant la circulation thermohaline [Source :Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC)]

Les sargasses envahissent les Antilles // Sargassas invade the West Indies

Quand on lit les textes liés à la « découverte » de l’Amérique par Christophe Colomb, il est souvent fait référence à la Mer des Sargasses, une zone de l’Océan Atlantique nord. Elle s’étend à peu près de 70 à 40 degrés ouest, et de 25 à 35 degrés nord. Elle a une largeur de 1 100 km, et une longueur d’environ 3 200 km environ. Elle tient son nom des algues qui ont la particularité d’y flotter et de s’accumuler à la surface de la mer.

Conséquence probable du réchauffement climatique, une invasion de sargasses est en train d’empoisonner les Antilles, en particulier la Martinique et surtout la Guadeloupe, et cela fait 7 ans que ça dure.

J’étais à la Martinique au mois d’avril et la situation frisait la catastrophe. Les plages de l’Atlantique – Robert, François, Vauclin, Marin, Sainte-Anne – sont actuellement totalement polluées par les sargasses qui affluent en quantités de plus en plus importantes. La situation a pris une ampleur jamais observée auparavant, contrairement à ceux qui disent « on a toujours connu ça. » On a certes connu ça, mais jamais dans de telles proportions.

Les conséquences sont multiples et affectent plusieurs domaines. Les nuisances sont un problème pour les populations résidant sur les littoraux. L’hydrogène sulfuré (H2S) dégagé par les algues en décomposition attaque les peintures des maisons, ainsi que le matériel électronique et électrique. Plus grave, il y a des conséquences sanitaires. L’employée d’un restaurant où je déjeunais à la Pointe Faula au Vauclin était en congé de maladie car elle souffrait de vertiges. D’autres affections incluent des troubles respiratoires, des irritations oculaires, ainsi que des céphalées pouvant entraîner des pertes de connaissance.
En dehors de ces risques sanitaires qui touchent les populations locales, les conséquences sur le tourisme ne sont pas à négliger,de même que pour toutes les activités liées au tourisme (restauration en bord de mer, sports en mer, etc..). Par ailleurs, les conséquences sur la flore et la faune marine sont à prendre en compte. Si la masse d’algues est trop importante, elle étouffe toute vie marine car elle empêche le soleil d’entrer, et provoque des déserts marins. Elle pourrait donc affecter durablement la pêche en Martinique qui souffre déjà du problème de la pollution au chlordécone, un insecticide, utilisé pendant plus de vingt ans dans les bananeraies de Martinique et de Guadeloupe et qui a empoisonné pour des siècles les écosystèmes antillais.

Une cause très probable de cet afflux de sargasses est l’augmentation de la température de l’Océan Atlantique. On évoque également une modification du Gulf Stream qui provoquerait une dispersion de la Mer des Sargasses plus au sud. Un autre facteur a été avancé par les biologistes marins: la masse de plastique dans la zone de la Mer des Sargasses. Normalement, les sargasses se développent et se reproduisent en face du Mexique, Avec les courants marins, elles se déplacent ensuite vers la Mer des Sargasses. Avec l’augmentation des déchets plastiques dans cette zone, on peut se demander si les algues qui ont besoin d’un support pour se reproduire ne trouvent pas sur place, en pleine mer, grâce au plastique, le moyen de proliférer. D’autres chercheurs pensent que les algues proviennent de Guyane et non de la Mer des Sargasses et seraient liées à l’augmentation de la pollution qui créerait des conditions favorables à leur prolifération ;

S’agissant des remèdes à ce problème environnemental, on pourrait développer une filière des Sargasses qui existe déjà à la Barbade et consiste à transformer les algues en engrais végétal de très bonne qualité. En attendant, un filet anti-sargasses est actuellement testé dans la baie du Robert. Il a été déployé sur 700 mètres mais doit, à terme, être étendu sur 1200 mètres. Ce dispositif, s’il fonctionne, doit permettre de protéger les habitants de Pontaléry au Robert. Le filet est composé d’un grillage en plastique, disposé sur des poteaux en pleine mer. Il est lesté par un câble de plomb et maintenu par des flotteurs. Ce n’est qu’une mesure ponctuelle et qui semble dérisoire face à l’ampleur du problème. L’odeur pestilentielle demeure, les habitants sont mécontents et les touristes fuient…

Nicolas Hulot s’est rendu aux Antilles les 10 et 11 juin derniers. Il a admis que cette «invasion est une calamité supplémentaire dont les Antilles se seraient bien passé » . Il a ajouté qu’en métropole, « on n’avait probablement pas pris toute la mesure. »  Le ministre a indiqué que, face à ce phénomène, « il fallait gérer les urgences sanitaires, économiques, mais aussi préparer l’avenir… » La situation est d’autant plus urgente que la façade caraïbe de la Martinique commence à voir des bancs de sargasses s’échouer sur ses côtes… (voir la carte ci-dessous).

Source : Presse antillaise.

——————————————

When one reads the texts related to the « discovery » of America by Christopher Columbus, they often refer to the Sargasso Sea, an area of ​​the North Atlantic Ocean. It is about 70 to 40 degrees west and 25 to 35 degrees north. It has a width of 1,100 km, and a length of about 3,200 km. It takes its name from the algae that float there and accumulate on the surface of the sea.
As a result of global warming, an invasion of Sargassum is poisoning the West Indies, especially martinique and above all Guadeloupe. The probem has lasted for more than seven years.
I was in Martinique in April and the situation was disastrous. The beaches of the Atlantic – Robert, Francois, Vauclin, Marin, Sainte-Anne – are currently completely polluted by Sargassum invading them in larger and larger quantities. The situation has reached a scale never seen before, contrary to those who say « we have always known that. » We have certainly known that, but never in such proportions.
The consequences are multiple and affect several areas. Nuisance is a problem for people living on the coasts. Hydrogen sulfide (H2S) released by decaying algae attacks homes’ paints, as well as electronic and electrical equipment. More serious, there are health consequences. The employee of a restaurant where I had lunch at Pointe Faula in Vauclin was on sick leave because she suffered from vertigo. Other conditions include breathing problems, eye irritations, and headaches that can lead to unconsciousness.
Apart from these health risks that affect the local population, the consequences for tourism are not to be neglected, as for all activities related to tourism (restaurants by the sea, sports at sea, etc. ..). In addition, the consequences on marine flora and fauna must be taken into account. If the mass of algae is too large, it stifles all marine life because it prevents the sun from entering, and causes marine deserts. It could therefore have a lasting effect on fishing in Martinique, which is already greatly affected by the problem of pollution with chlordecone, an insecticide used for over twenty years in banana plantations in Martinique and Guadeloupe, which has poisoned Antillean ecosystems for centuries.
A very probable cause of this influx of Sargassum is the increase of temperature of the Atlantic Ocean. There is also talk of a modification of the Gulf Stream which would cause a dispersion of the Sargasso Sea further south. Another factor has been advanced by marine biologists: the plastic mass in the Sargasso Sea area. Normally, Sargassum grow and reproduce in front of Mexico; with the sea currents, they then move to the Sargasso Sea. With the increase in plastic waste in this area, one may wonder if algae that need support to reproduce can not find, on the open sea, thanks to plastic, the means to proliferate. Other researchers believe that the algae come from Guyana and not from the Sargasso Sea and are linked to the increase in pollution that would create favorable conditions for their proliferation;
As far as the remedies for this environmental problem are concerned, one could develop a Sargasso sector that already exists in Barbados and consists in transforming seaweed into vegetable fertilizer of very good quality. In the meantime, an anti-Sargassum net is being tested in Robert’s Bay. It has been deployed over 700 metres but might eventually be extended over 1200 metres. The net, if it poves efficient, will protect the inhabitants from Pontaléry to Robert. The net consists of a plastic mesh, placed on posts in open sea. It is weighted by a lead cable and maintained by floats. This is only a one-off measure and seems derisory in the face of the scale of the problem. The stench remains, the inhabitants are unhappy and the tourists are fleeing …
Nicolas Hulot visited the West Indies on June 10th and 11th. He admitted that this « invasion was an additional calamity that the West Indies would have done well ». He added that in the metropolis, « we probably had not taken the full measure. The minister said that, faced with this phenomenon, « it was necessary to manage the health and economic emergencies, but also to prepare the future … » The situation is all the more worrying as the Carribean part of the island is now affected by the sargassum as well… (see map below).
Source: Caribbean Press.

Le site web France-Antilles a publié une carte montrant les côtes impactées à différents niveaux par les bancs de sargasses:

Les sargasses envahissent le littoral. C’est leur décomposition à terre qui pose problème:

 (Photos: C. Grandpey)

Atlantique Nord : Risque d’un refroidissement rapide au 21ème siècle ? // Will the North Atlantic get rapidly colder in the 21st century ?

drapeau-francaisVoici dans son intégralité un communiqué de presse du CNRS diffusé le 15 février 2017:

« La possibilité d’un changement important du climat autour de l’Atlantique est connue depuis longtemps, et a même été portée à l’écran avec le film « Le jour d’après ». Pour en évaluer le risque, des  chercheurs du CNRS/Université de Bordeaux et de l’Université de Southampton ont développé un nouvel algorithme pour analyser les 40 projections climatiques prises en compte dans le dernier rapport du Groupe d’Experts Intergouvernemental sur l’Evolution du Climat (GIEC). Cette nouvelle étude fait grimper la probabilité d’un refroidissement rapide de l’Atlantique Nord au cours du 21ème  siècle à près de 50 %. La revue Nature Communications a publié ces résultats, le 15 février 2017.

Détecté dans toutes les projections des modèles climatiques actuels, le ralentissement de la circulation océanique de retournement [NDLR : aussi appelée circulation thermohaline]  – dont fait partie le Gulf Stream – pourrait entraîner un bouleversement climatique sans précédent. En 2013, le GIEC, se basant sur les résultats d’une quarantaine de projections climatiques, a estimé que ce ralentissement s’installerait progressivement et sur une échelle de temps longue. Un refroidissement rapide de l’Atlantique Nord au cours du 21ème siècle semblait donc peu probable.
Dans le cadre du projet européen EMBRACE, une équipe d’océanographes a réexaminé ces 40 projections climatiques en se focalisant sur un point essentiel au nord-ouest de l’Atlantique Nord : la mer du Labrador. Cette mer est le siège d’un phénomène de convection, qui nourrit à plus grande échelle la circulation océanique de retournement. Ses eaux de surface se refroidissent fortement en hiver, deviennent plus denses que les eaux de profondeur et plongent vers le fond. La chaleur des eaux profondes est transférée vers la surface et empêche la formation de banquise. Choisissant d’étudier ce phénomène de convection en détail, les chercheurs ont développé un algorithme capable de repérer les variations rapides des températures à la surface de l’océan. L’algorithme a révélé que 7 des 40 modèles climatiques étudiés projetaient un arrêt complet de la convection engendrant des refroidissements abrupts – 2 ou 3 degrés en moins de dix ans – de la mer du Labrador, induisant de fortes baisses des températures dans les régions côtières de l’Atlantique Nord.
Mais un tel refroidissement rapide, simulé seulement par quelques modèles, est-il vraisemblable ? Pour répondre à cette question, les chercheurs se sont penchés sur la variable la plus importante du déclenchement de la convection hivernale : la stratification océanique. Ces variations verticales de la densité des masses d’eau sont bien reproduites dans 11 des 40 modèles. Parmi ces 11 modèles, qui peuvent être considérés comme les plus fiables, 5 simulent une baisse rapide des températures de l’Atlantique Nord, soit 45 % !
Ces résultats issus de modèles climatiques pourront être confrontés aux futures données du projet international OSNAP qui prévoit l’installation de bouées fixes dans le gyre subpolaire. De quoi anticiper de possibles refroidissements rapides dans les années à venir. Ce risque devra par ailleurs être pris en compte dans les politiques d’adaptation au changement climatique des régions bordant l’Atlantique Nord. »

++++++++++

L’article est intéressant, mais il semble hasardeux aujourd’hui de faire des prévisions à long terme pour le 21ème siècle. Il est vrai que les scientifiques mentionnés dans le rapport ne pourront pas être mis en examen car ils ne seront plus de ce monde! Il y a quelque temps, nombre de chercheurs prévoyaient à court terme un refroidissement de l’Arctique suite à l’épuisement d’El Niño et l’apparition de La Niña. La Nature semble leur avoir donné tort puisque de nouveaux records de chaleur viennent d’être enregistrés dans les hautes latitudes. Le changement climatique aura-t-il un effet sur les courants marins? C’est possible, mais ce n’est pas certain. Si un tel bouleversement se produisait, il ne fait guère de doute que nos descendants seraient confrontés à de graves problèmes de vie, voire de survie.

———————————————–

drapeau-anglaisHere is the full text of a CNRS press release published on February 15th 2017:

« The possibility of a significant change in the climate around the Atlantic has been known for a long time, and has even been brought to the screen with the film » The Day After « . To evaluate the risk, researchers at the CNRS / University of Bordeaux and the University of Southampton have developed a new algorithm to analyze the 40 climate projections taken into account in the last report of the Intergovernmental Panel on the Evolution of Climate (IPCC). This new study raises the probability of a rapid cooling of the North Atlantic during the 21st century to nearly 50%. Nature Communications published the results on February 15th, 2017.
Detected in all projections of current climate models, the slowdown in oceanic reversal circulation (known as the thermohaline circulation) – of which the Gulf Stream is part – could lead to unprecedented climate change. In 2013, the IPCC, based on the results of some 40 climate projections, estimated that this slowdown would gradually take place over a long period of time. A rapid cooling of the North Atlantic during the 21st century thus seemed unlikely.
In the framework of the European project EMBRACE, a team of oceanographers has re-examined these 40 climate projections focusing on a key point in the northwest Atlantic: the Labrador Sea. This sea is the seat of a phenomenon of convection, which contributes on a larger scale to the thermohaline circulation. Its surface water cools strongly in winter, becomes denser than deep water and plunges to the bottom. Deep water heat is transferred to the surface and prevents the formation of pack ice. Choosing to study this phenomenon of convection in detail, the researchers developed an algorithm capable of detecting the rapid variations of the temperatures on the surface of the ocean. The algorithm revealed that 7 of the 40 climate models studied projected a complete cessation of convection, resulting in abrupt cooling – 2 or 3 degrees in less than ten years – of the Labrador Sea, resulting in severe temperature drops in coastal regions of the North Atlantic.
Is such a rapid cooling, simulated only by a few models, likely? To answer this question, researchers looked at the most important variable in the triggering of winter convection: ocean stratification. These vertical variations in the density of water bodies are well reproduced in 11 of the 40 models. Among these 11 models, which can be considered as the most reliable, 5  – 45% ! – simulate a rapid decline in North Atlantic temperatures.
These results from climate models may be compared with future data from the international OSNAP project, which involves the installation of fixed buoys in the subpolar gyre. They will help to anticipate possible rapid cooling in the years to come. This risk should also be taken into account in climate change adaptation policies in the regions bordering the North Atlantic. »

++++++++++

The article is interesting, but it seems risky today to make such forecasts for the 21st century. It is true that the scientists mentioned in the report will never be put under investigation because they will no longer be of this world! Some time ago, many scientists predicted for the short term a cooling of the Arctic due to the depletion of El Niño and the appearance of La Niña. Nature behaved differently and new records of heat have just been recorded in the high latitudes. Will climate change affect ocean currents? Maybe, but it is not certain. Should such an upheaval occur, our descendants would undoubtedly face serious problems of life, even survival.

circulacion_termohalina

Vue simplifiée de la circulation thermohaline (Source: Wikipedia)

gr-08

Les générations à venir verront-elles apparaître la glace de mer au large de la Bretagne ?

(Photo: C. Grandpey)