Où sont passés les avions renifleurs de cendre volcanique ? // Where are the volcanic ash detecting planes ?

En raison de l’éruption du Ruang, l’aéroport Sam Ratulangi de Manado, en Sulawesi du Nord, sera fermé au moins jusqu’au dimanche 21 avril 2024 à 12h00 (heure locale). La prolongation de l’arrêt d’activité a été décrétée pour des raisons de sécurité. Les autorités locales expliquent qu’il serait très dangereux que des cendres volcaniques entrent en contact avec les avions. En conséquence, des dizaines de vols en provenance et à destination de Manado et d’autres aéroports voisins ont dû être annulés en raison de la présence des cendres volcaniques provoquées par l’éruption du Ruang. Actuellement, des panaches de cendres s’élèvent encore du volcan jusqu’à une altitude de 4 500 mètres, ce qui peut potentiellement endommager les moteurs des avions. Afin de minimiser les pertes pour les passagers, les compagnies aériennes rembourseront tous les billets jusqu’à ce que l’aéroport de Manado soit de nouveau opérationnel.
On remarquera que la situation du trafic aérien ne s’est pas améliorée depuis l’éruption de l’Eyjafjallajökull en Islande en 2010, événement qui a cloué au sol les avions qui devaient voler dans l’espace européen. À l’époque, certaines compagnies avaient promis d’installer à bord des appareils des équipements permettant de détecter les cendres dans le ciel, mais aucune mesure n’a vraiment été prise. On se souvient que des sacs de cendres de l’Etna ont été déversés au-dessus du Golfe de Gascogne et que des avions ont traversé ces cendres, mais quelques mois plus tard, lorsque le volcan sicilien est véritablement entré en éruption, aucun avion ne s’est aventuré à l’intérieur des nuages de cendres ! En 2014, alors que je voyageais vers l’Alaska depuis Londres à bord d’un Boeing 767 de la British Airways, j’ai aperçu la fumée noire de l’éruption dans l’Holuhraun au-dessus du nord de l’Islande. J’ai demandé à un steward d’informer le pilote de l’événement. Le pilote est venu me voir et m’a dit qu’il n’avait jamais entendu parler de cette éruption et que, de toute façon, il n’y avait pas de système de détection de cendres à bord de l’avion… Je pense que ce n’est pas demain que les compagnies aériennes accepteront de mettre en danger la vie de milliers de passagers dans un texte contexte éruptif. C’est une sage décision quand on se souvient des catastrophes aériennes évitées de justesse lors des éruptions du Galunggung (Indonésie) en 1982 et du Redoubt (Alaska) en 1989. Ces deux incidents sont indirectement responsables des perturbations causées au trafic aérien au printemps 2010 par l’éruption de l’Eyjafjallajökull en Islande. En effet, ils ont largement été évoqués pour justifier le principe de précaution et l’annulation de nombreux vols.

Panaches de cendres sur l’Etna (Photo: C. Grandpey)

————————————————-

Because of the Mt Ruang eruption the Sam Ratulangi Airport in Manado, North Sulawesi, will be closed at least until Sunday at 12:00 p.m. local time. The extension was made considering safety concerns. Local authorities explain that it would be very dangerous if volcanic ash were attached to the aircraft. As a consequence, dozens of flights from and to Manado and other nearby airports had to be canceled due to the spread of volcanic ash from the eruption of Mount Ruang. Currently, ash clouds are still observed at an altitude of 4,500 meters, which has the potential to damage aircraft engines during flight. To minimize the losses for the passengers, the airlines have refunded all tickets until Manado Airport resumes operations.

It should be noticed that the situation of air traffic has not improved since the 2010 eruption of Eyjafjallajökull in Iceland that brought planes to a standstill in the European airspace. At the time, there were promises by some air companies that equipment would be installed aboard the aircraft to detect ash in the sky, but nothing has really happened since that time. One can remember that bags of ash from Mt Etna were poured above the Bay of Biscay with planes flying across it, but a few months later, when the Sicilian volcano really erupted, no plane ventured inside the ash clouds ! In 2014, while travelling to Alaska on board a British Airways Boeing 767, I could see the dark smoke from the Holuhraun eruption over northern Iceland. I asked a steward to inform the pilot about the vent. The pilot came to me and told me he had never heard about the eruption and that there was no ash detection system aboard the plane… I think air companies are not ready to endanger the lives of thousands of passengers during an eruptive period.  It is a wise decision when we remember the air disasters narrowly avoided during the eruptions of Galunggung (Indonesia) in 1982 and Redoubt (Alaska) in 1989. These two incidents are indirectly responsible for the disruptions caused to air traffic in spring 2010 by the eruption of Eyjafjallajökull in Iceland. Indeed, they have been widely cited to justify the precautionary principle and the cancellation of numerous flights.

Moins d’avions pour sauver le planète ? // Fewer planes to save the planet ?

Au moment où les compagnies prévoient un doublement du trafic aérien en 20 ans, on peut se poser des questions sur l’impact des avions sur le climat. Au printemps 2020, avec la crise sanitaire du Covid-19, de nombreux vols ont été annulés partout sur Terre. La conséquence a été immédiate : sur l’ensemble de l’année, les émissions de gaz à effet de serre de l’aviation civile ont drastiquement baissé de 60 %. Ces gaz résultent principalement de la combustion de kérosène dans les réacteurs, avec des émissions de dioxyde de carbone (CO2), un gaz à effet de serre qui s’accumule dans l’atmosphère et dont les émissions représentent entre 2,5 % et 3,5% des émissions anthropiques de CO2 dans le monde.

Les avions en vol rejettent des résidus du carburant qu’ils consomment. Ces particules favorisent par condensation la formation de cirrus, fins nuages vaporeux qui empêchent la chaleur de se dissiper et contribuent donc au réchauffement climatique. Ces traînées de condensation constituées de cristaux de glace, vont former des nuages artificiels autour des particules contenues dans les gaz d’échappement des avions. Les cirrus vont emprisonner la chaleur dans l’atmosphère terrestre. Des scientifiques estiment que les réduire pourrait donc permettre de ralentir la progression du réchauffement climatique.

Comme je l’ai écrit plus haut, en 2020, au cours de la pandémie de Covid, la circulation aérienne a été fortement limitée par les mesures de confinement. Durant cette période, le ciel a été plus dégagé. En absence d’avions, le nombre de cirrus a été réduit de 9%, et ceux qui se sont formés étaient un peu moins denses.

L’arrêt des avions a forcément eu un effet bénéfique immédiat sur le réchauffement climatique, mais il faut être prudent avant de tirer des conclusions hâtives. Il est vrai que les ÉMISSIONS de gaz polluants ont baissé de manière significative. Les paysages n’étaient plus recouverts de brume. En Inde, on pouvait voir la chaîne himalayenne de très loin.

Le problème, c’est que dans le même temps les CONCENTRATIONS de CO2 dans l’atmosphère ne baissaient pas. Je regardais chaque jour la Courbe de Keeling qui enregistre les concentrations de gaz carbonique sur le Mauna Loa à Hawaii et aucune baisse de concentrations ne s’est produite pendant la pandémie. A supposer (douce illusion) que nous arrêtions brutalement d’émettre des gaz à effet de serre, il faudrait plusieurs décennies avant que l’atmosphère retrouve un semblant de propreté et d’équilibre.

Avant la crise Covid, l’aviation connaissait un essor rapide.  Si cette évolution se poursuit, les émissions de carbone des avions augmenteront beaucoup l’effet de serre. De plus, elles provoqueront la formation de plus de cirrus. Vu le développement de ce mode de transport, le réchauffement provoqué par les cirrus pourrait tripler vers 2050.

Une solution pourrait résider dans l’observation par satellite. Désormais, les compagnies aériennes seraient en mesure de faire voler leurs avions sans créer de traînées de condensation. Il s’agirait d’éviter les régions dites « sursaturées de glace » et particulièrement humides de l’atmosphère. Là, des traînées de longue durée peuvent, en effet, se former. Cela impliquerait des changements d’altitude similaires à ceux que les pilotes effectuent déjà pour éviter les zones de turbulences. Le problème, c’est que les manœuvres supplémentaires effectuées par les pilotes entraîneraient l’augmentation de la consommation de carburant à hauteur d’environ 2 %.

Une autre solution réside peut-être dans la conception de nouveaux carburants. Des combustibles plus propres pourraient limiter la condensation des nuages, et les émissions de CO2 aéronautiques devraient aussi être sérieusement limitées.

En tout cas, ce ne sont pas les participants aux différentes COP qui sont en train de donner l’exemple. Le bilan carbone de ces réunions est une catastrophe.

 

Crédit photo : National Weather Service

——————————————————-

At a time when companies are forecasting a doubling of air traffic in 20 years, we can ask questions about the impact of planes on the climate. In spring 2020, with the Covid-19 health crisis, many flights were canceled everywhere on Earth. The consequence was immediate: over the year as a whole, greenhouse gas emissions from civil aviation fell drastically by 60%. These gases result mainly from the combustion of kerosene in reactors, with emissions of carbon dioxide (CO2), a greenhouse gas which accumulates in the atmosphere and whose emissions represent between 2.5%and 3.5% of anthropogenic emissions from CO2 in the world.

It has long been known that air travel contributes to global warming. Airplanes in flight release residues from the fuel they consume. These particles, through condensation, promote the formation of cirrus clouds, fine vaporous clouds which prevent heat from dissipating and therefore contribute to global warming. These condensation trails, made up of ice crystals, will form artificial clouds around the particles contained in aircraft exhaust gases. These cirrus clouds will trap heat in the Earth’s atmosphere. Scientists estimate that reducing them could therefore help slow the progression of global warming.
As I put it above, in 2020, during the Covid pandemic, air traffic was severely limited by containment measures. During this period, the sky was clearer. In the absence of planes, the number of cirrus clouds was reduced by 9%, and those that formed were a little less dense.
The stopping of planes necessarily had an immediate beneficial effect on global warming, but one should be careful before drawing hasty conclusions. It is true that EMISSIONS of polluting gases decreased significantly. The landscapes were no longer covered in mist. In India, one could see the Himalayan range from very far away.
The problem is that at the same time CO2 CONCENTRATIONS in the atmosphere were not dropping. I watched everyday the Keeling Curve which records carbon dioxide concentrations on Mauna Loa in Hawaii and no drop in concentrations occurred during the pandemic. Assuming (an illusion) that we suddenly stop emitting greenhouse gases, it would take several decades before the atmosphere regains a semblance of cleanliness and balance.
Before the Covid crisis, aviation was experiencing rapid growth. If this development continues, carbon emissions from aircraft will greatly increase the greenhouse effect. Additionally, they will cause more cirrus clouds to form. Given the development of this means of transport, the warming caused by cirrus clouds could triple around 2050.

One solution could lie in satellite observation. Airlines could fly their planes without creating contrails. This would involve avoiding so-called “ice-oversaturated” and particularly humid regions of the atmosphere, where, long-lasting streaks can, in fact, form. This would involve altitude changes similar to those that pilots already make to avoid areas of turbulence. The problem is that the additional maneuvers performed by the pilots would increase fuel consumption by about 2%.
Another solution may lie with the design of new fuels. Cleaner fuels could limit cloud condensation, but CO2 emissions by planes should also be strongly limited.
In any case, the participants in the different COPs are not setting the example. The carbon footprint of these meetings is a disaster.

Nuages de cendre volcanique // Volcanic ash clouds

De toute évidence, aucune mesure concrète et efficace dans le domaine du trafic aérien n’a fait suite à l’éruption de l’Eyjafjallajökull en Islande en 2010. Aucun système fiable de détection de la cendre volcanique n’a été installé dans les aéronefs. Cela m’a été confirmé par des pilotes de la British Airways et d’Air France. Les efforts ont essentiellement porté sur la recherche de solutions permettant de détecter la cendre depuis le sol jusqu’à une altitude minimale de 12 km et d’en évaluer la densité. Ainsi, les avionneurs sont en mesure de mieux comprendre les densités de cendre que leurs avions peuvent endurer. De plus, les Volcanic Ash Advisory Centres (VAACs), centres conseil en cendres volcaniques, disposent maintenant d’outils et de procédures beaucoup plus performants qu’en 2010 pour cartographier et localiser les nuages ​​de cendre.
Malgré tous ces efforts, la dernière éruption du Mont Agung a provoqué la fermeture de plusieurs aéroports indonésiens, ainsi que de nombreuses annulations de vols. La couleur de l’alerte aérienne est également passée au Rouge lors de la dernière éruption du Mayon aux Philippines. Le Mont Sinabung sur l’île de Sumatra est entré en éruption en février et a envoyé un nuage de cendre jusqu’à 7 kilomètres de hauteur. La couleur de l’alerte aérienne est, là aussi, passée au Rouge et les pilotes devaient donc éviter de s’approcher du volcan.
L’expérience a montré à plusieurs reprises aux compagnies aériennes que la cendre volcanique peut constituer un réel danger pour les avions. Le mélange de roches pulvérisées, de gaz et de minuscules éclats de verre peut causer des dégâts à la carlingue des avions, pénétrer à l’intérieur des réacteurs et même les bloquer. La cendre peut aussi réduire à néant les principaux systèmes de navigation et de communication. C’est pourquoi les neuf VAAC à travers le monde surveillent les éruptions volcaniques comme celle du Sinabung. Leur rôle est de suivre l’évolution et le déplacement des nuages ​​de cendre en temps réel et d’éloigner les avions.
À l’aide des images satellites, des rapports de pilotes et des données provenant d’observatoires volcanologiques, ces VAAC émettent des bulletins d’alerte avec des codes de couleurs différentes : Vert signifie qu’un volcan est calme; Jaune signifie que le volcan a commencé à entrer en activité; Orange signifie qu’une éruption est probable alors que Rouge signifie qu’une importante éruption est en cours ou a commencé. Les responsables des VAAC ne disent pas aux pilotes ce qu’ils doivent faire ; leur rôle se limite à fournir des informations essentielles sur la taille et l’emplacement des nuages de cendre, ainsi que leur direction.
Les VAAC ont été créés par l’Organisation de l’Aviation Civile Internationale (OACI) après que plusieurs avions aient failli s’écraser après avoir traversé des nuages ​​de cendre. En 1982, les moteurs de deux avions qui avaient volé à travers la cendre émise par le Galunggung (Indonésie) ont cessé de fonctionner et les pilotes ont dû effectuer des atterrissages d’urgence. L’un d’entre eux, un Boeing 747 de la British Airways, a décroché de plus de 6 000 mètres avant que le pilote réussisse à redémarrer trois des quatre moteurs. En 1989, un autre Boeing 747 a failli s’écraser après avoir traversé le nuage de cendre émis par le Mont Redoubt en Alaska; les quatre moteurs avaient cessé de fonctionner!
La cendre volcanique peut endommager un avion de plusieurs façons. L’une des conséquences les plus graves est, bien sûr, l’arrêt des moteurs. La cendre contient de minuscules particules de verre qui peuvent fondre sous l’effet de la chaleur d’un réacteur. Ce verre fondu peut pénétrer dans des pièces maîtresses, réduire la puissance du moteur, ou le bloquer carrément. Avec la vitesse de vol des avions, la cendre qui entre en contact avec l’extérieur de l’avion peut également briser les antennes, créer un écran sur les pare-brise ​​et générer de l’électricité statique susceptible de perturber les signaux de navigation et de communication. La cendre peut aussi détruire les systèmes indiquant la vitesse de l’avion. On a vu récemment les problèmes dramatiques provoqués par le mauvais fonctionnement des sondes Pitot.
Les compagnies aériennes ne savent pas évaluer la densité de cendre tolérable pour faire voler les appareils. Pendant longtemps, elles ont évité de les faire voler lorsque de la cendre était dans l’air. Toutefois, après que des millions de personnes aient été bloquées et que des milliards de dollars aient été perdus lors de l’éruption de l’Eyjafjallajökull en 2010, les scientifiques ont commencé à faire des recherches. Des tests ont été effectués mais, de toute évidence, les résultats ne sont pas fiables.
Au vu des statistiques de l’USGS, des avions ont traversé des nuages ​​de cendre volcanique à 253 reprises entre 1953 et 2016. Neuf d’entre eux ont connu une panne de moteur, mais aucun ne s’est écrasé. On ne sait pas pourquoi certains nuages ​​de cendre peuvent avoir un effet  dévastateur sur certains moteurs, alors que d’autres avions peuvent se sortir des nuages de cendre relativement indemnes. C’est probablement parce que la composition de la cendre peut varier d’un volcan à l’autre.
Un autre problème doit être pris en compte: Tous les volcans ne sont pas surveillés, en particulier dans certaines régions volcaniques du Pacifique, de sorte que des pilote peuvent devoir traverser des nuages de cendre sans avoir été prévenus de leur présence.

Au bout du compte, il semble bien que la situation n’ait guère évolué depuis l’éruption de l’Eyfjallajökull….

Adapté à partir d’un article paru dans The Verge., VAAC Toulouse, Météo France, Rolls Royce.

——————————————–

Apparently, the 2010 eruption of Eyjafjallajökull in Iceland did not bring any profitable lesson as far as air traffic is concerned. No reliable ash detection system has been installed in aircraft. This was confirmed to me by British Airways and Air France pilots. Efforts have essentially been made to investigate solutions to detect ash from the ground up to a minimum altitude of 12 km and to assess its density. In this way, plane manufacturers can better understand what densities of ash their aircraft are able to endure. Moreover, Volcanic Ash Advisory Centres (VAACs) now have significantly more sophisticated tools and procedures for mapping and forecasting the location of ash clouds than were available in 2010.

Despite all these efforts, the last eruption of Mt Agung caused the closure of several Indonesian airports, as well as many flight cancellations. The aviation colour code was also raised to Red during the last eruption of Mt Mayon in the Philippines. More recently, Mount Sinabung on Sumatra Island erupted in February and spewed an ash cloud up to 7 kilometres in the air. The aviation colour code was raised to Red, which meant that pilots should fly away from the volcano.

Experience has told aviation companies that volcanic ash can be a real danger to aircraft. The mixture of crushed rocks, gases, and tiny shards of glass can sandblast the plane’s exterior, get into the engine and block them, and ruin key navigational and communications systems. That’s why the nine Volcanic Ash Advisory Centers around the world keep watch for volcanic eruptions like Mt Sinabung’s. Their role is to track the ash clouds in real time and to divert the planes around.

Using a combination of satellite imagery, pilot reports, and data from volcano observatories, these VAACs issue colour-coded warnings: Green means a volcano is quiet; Yellow means the volcano is starting to get restless; Orange that an eruption is likely while Red means a big eruption is on its way, or has already started. The advisories don’t tell pilots what to do, but they provide key information about the size and location of the ash cloud and its direction.

The Volcanic Ash Advisory Centers were formed by the International Civil Aviation Organization after several planes almost crashed after flying through ash clouds. In 1982, two airplanes flying through ash emitted by Indonesia’s Mount Galunggung lost power to their engines and had to make emergency landings. One of them, a British Airways Boeing 747, plummeted more than 6,000 metres before the pilot could restart three of the four engines. Then, in 1989, another Boeing 747 nearly crashed after it flew through volcanic ash from Mount Redoubt in Alaska; all four of its engines had stopped functioning!.

Volcanic ash can damage an airplane in multiple ways. One of the most dangerous is by blocking the engine. Indeed, volcanic ash contains tiny glass particles that can melt in a jet engine’s heat. This molten glass can stick to key components, cutting the engine’s power, or killing it completely. At high speeds, ash coming into contact with the exterior of the plane can also break antennas, cloud windscreens, and generate static electricity that distorts navigation and communication signals. If ash flies into tubes that measure airspeed, it can also break the plane’s speedometer.

Air companies don’t know exactly how much ash is safe to fly through. For a long time, the aviation industry avoided flying when any ash was in the air. But after millions of people were stranded and billions of dollars were lost during the eruption of Iceland’s Eyjafjallajökull volcano in 2010, scientists began trying to figure out if there’s a middle ground. Tests were performed but the results obviously did not prove reliable.

All told, planes have flown through volcanic ash clouds about 253 times between 1953 and 2016, according to a report from the US Geological Survey. Only nine of those experienced engine failure, and none crashed. It’s not completely clear why certain ash clouds can have such a devastating effect on certain engines, and why other planes can fly through relatively unharmed. One possibility is that the composition of ash can vary from volcano to volcano.

There is another problem: not every volcano is monitored, especially in some volcanic regions of the Pacific, so it is still possible for planes to fly through ash clouds without warning.

To put it shortly, it seems the situation has not much changed since the 2010 eruption of Eyjafjallajökull…

Adapted from an article published in The Verge., VAAC Toulouse, Météo France, Rolls Royce.

Eruption du Galunggung en 1982 (Crédit photo: Wikipedia)

Eruption du Redoubt en 1990 (Crédit photo: Wikipedia)

Eruption de l’Eyjafjallajökull en 2010 (Crédit photo: Wikipedia)