Surveillance acoustique des volcans // Acoustic monitoring of volcanoes

Aux États-Unis et ailleurs dans le monde, l’activité volcanique peut prendre différentes formes, depuis les éruptions fissurales basaltiques relativement tranquilles à Hawaï jusqu’aux éruptions explosives très violentes du Mont St. Helens. Les scientifiques en poste dans les observatoires volcanologiques essayent en permanence de comprendre de tels événements et leurs implications en matière de dangers et donc de sécurité.
Les observatoires volcanologiques utilisent souvent des instruments de surveillance continue à distance comme les sismomètres et les microphones acoustiques pour détecter les événements sismiques et les explosions. Ces capteurs sont très utiles car ils peuvent assurer une surveillance permanente et les scientifiques peuvent appliquer des capacités de détection à distance pour surveiller l’activité.
Des chercheurs de plusieurs observatoires volcanologiques gérés par l’USGS se sont joints à d’autres scientifiques de différents pays pour observer et analyser deux types d’activité éruptive sur le Stromboli (Sicile/Italie).
Les scientifiques souhaitaient découvrir les différences entre les éruptions explosives discrètes et les événements plus violents, ou épisodes éruptifs ‘soutenus’. Les deux types d’éruptions ont des conséquences différentes en matière de danger et de sécurité des populations à Stromboli. L’étude du comportement du volcan permet une meilleure compréhension de ces événements, et l’application à des types similaires d’activité volcanique ailleurs dans le monde.
Les éruptions explosives se caractérisent par leur soudaineté et ont tendance à répandre de l’énergie de manière uniforme dans toutes les directions. Ces éruptions peuvent également projeter des matériaux dans toutes les directions. Sur le Stromboli, les épisodes éruptifs ‘soutenus’ ont des durées plus longues et produisent un panache de cendres et de matériaux qui jaillit loin de la bouche éruptive. Le processus est semblable à la dynamique des moteurs à réaction et de tels phénomènes volcaniques peuvent propulser les cendres à des hauteurs dépassant l’altitude du trafic aérien.
S’agissant de la surveillance volcanique, il est utile de comprendre les types de signatures produits par ces événements et comment ils sont enregistrés par les réseaux de surveillance conventionnels. En fait, ces réseaux ne sont pas vraiment performants car les capteurs sismiques et acoustiques sont presque toujours placés à la surface du sol et ne sont pas parfaits pour capter l’énergie des éruptions dans l’atmosphère.
L’équipe italienne de chercheurs a tenté d’améliorer la compréhension de la dynamique des éruptions en plaçant un capteur acoustique en hauteur, sur un drone au-dessus du Stromboli, pour capturer à la fois les explosions et les épisodes éruptifs ‘soutenus’. Les travaux ont révélé les principales caractéristiques qui permettent de distinguer facilement les deux types d’événements grâce à un capteur stationné brièvement au-dessus du volcan.
Cette expérience particulière réalisée en Italie présente un intérêt pour des éruptions ponctuelles mais ne peut être utilisée pour la surveillance des éruptions sur le long terme. Cependant, elle montre la capacité de capturer ces données, et elle identifie les contraintes qui entourent la conception de meilleurs réseaux au sol pour surveiller une grande variété de types d’éruption. Ce travail propose des méthodes pour améliorer la surveillance et la détection des éruptions volcaniques sur les volcans aux Etats Unis et ailleurs dans le monde.
L’Observatoire des volcans d’Hawaii (HVO) utilise actuellement les drones pour mesurer les gaz volcaniques et mener des relevés d’imagerie aérienne afin de générer des modèles tridimensionnels.
Source : USGS/HVO.

———————————————————

In the U.S. And elsewhere in the world, volcanic eruptive activity may take many forms, from basaltic fissures eruptions in Hawai‘i to explosive eruptions like those of Mount St. Helens. Volcano observatory scientists permanently try to understand such events and their implications for hazards.

Volcano observatories often use continuous remote monitoring instruments like seismometers and acoustic microphones to detect earthquakes and explosions. These types of sensors are ideal because they can monitor constantly, and scientists can apply remote detection capabilities to monitor activity.

USGS volcano observatory researchers joined international volcano scientists to examine two types of eruptive activity at Stromboli (Sicily / Italy).

The scientists were interested in discovering differences between discrete explosive eruptions compared to sustained eruptions (also called jet eruptions). The two eruption types have different implications for hazardous conditions at Stromboli. The motivation of the study is a better understanding of these events, at Stromboli, that can be applied to similar types of volcanic activity occurring around the globe.

Explosive eruptions are characterized by their impulsive onset and tend to radiate energy equally in all directions. These types of eruptions may throw rocks in all directions. At Stromboli, sustained jets have longer durations and produce a directed plume of ash and rocks away from the vent. The events are analogous to jet engine dynamics and such volcanic jetting can push ash to heights beyond international airline traffic altitudes.

From a volcano monitoring perspective, it is useful to understand the types of signatures that these events produce and how they are recorded on standard monitoring networks. However, networks are hindered because seismic and acoustic sensors are almost always placed on the ground surface and are not ideal for the capture of eruption energetics into the atmosphere.

The research team working in Italy attempted to improve the understanding of eruption dynamics by placing an acoustic sensor on a drone above Stromboli to capture both explosions and jet eruptions. The work revealed key features of the two event types that allow them to be easily distinguished by a sensor briefly suspended above the volcano.

This particular experiment in Italy is impractical from the perspective of long-term eruption monitoring. However, it demonstrates the ability to capture these data and identifies constraints on how to design better ground networks to monitor the wide variety of eruption types. This work introduces methods for improved monitoring and detection of volcanic eruptions at United States and international volcanoes.

The Hawaiian Volcano Observatory currently uses UAS techniques to measure volcanic gas and conduct aerial imagery surveys to generate three-dimensional models.

Source : USGS / HVO.

Eruption ‘soutenue’ du Stromboli, avec puissant  jet de matériaux (Photo: C. Grandpey)

Etude d’une éruption ‘soutenue’ sur le Stromboli. L’image de gauche montre l’événement. L’image du centre montre l’orientation du capteur par rapport à la direction de l’éruption et une image rapprochée du drone en vol stationnaire. L’image de droite montre l’expérience sur le terrain, avec le capteur attaché sous le drone. (Crédit photo : David Fee)

Des vers vieux de 46 000 ans reprennent vie après avoir été dégelés // 46,000-year-old worms brought to life after being thawed

Des vers vieux de 46 000 ans extraits du pergélisol sibérien ont été ramenés à la vie par l’Institut Max Planck de biologie cellulaire moléculaire (MPI-CBG) à Dresde (Allemagne) et deviennent les plus anciennes créatures connues à avoir existé. Les vers ont été découverts par des scientifiques russes à l’intérieur d’un dépôt glaciaire profond près de la rivière Kolyma en 2018, mais on ne savait pas de quelle espèce il s’agissait, ni depuis combien de temps ils étaient piégés dans la glace.
Aujourd’hui, le séquençage génétique montre qu’il s’agit d’une toute nouvelle espèce de ver nématode qui était en sommeil depuis la dernière période glaciaire. La datation au radiocarbone des végétaux trouvés au même niveau que les vers montre que les dépôts de permafrost n’avaient pas dégelé depuis le Pléistocène supérieur. Cela signifie qu’ils existaient déjà lorsque les Néandertaliens, les mammouths laineux et les tigres à dents de sabre parcouraient la région.
Les minuscules vers, qui mesurent moins d’un millimètre de long, ont été décongelés et ramenés à la vie dans une boîte de Pétri remplie d’une soupe nutritive conçue pour favoriser leur croissance. Après quelques semaines dans la boîte, les vers ont commencé à bouger et à manger. Ils sont morts en quelques mois, mais l’espèce s’est reproduite et est actuellement l’objet d’expériences en laboratoire. L’étude sur les nématodes a été publiée dans la revue Plos Genetics.
Les vers nématodes sont l’une des nombreuses créatures connues pour être capables de survivre dans des conditions difficiles en entrant dans un état semblable à l’hibernation, la cryptobiose. En 2021, des rotifères bdelloïdes, une classe d’invertébrés microscopiques, ont été découverts dans l’Arctique et ramenés à la vie après 24 000 ans.
Bien que les scientifiques aient déjà fait revivre des microbes et des bactéries unicellulaires datant de 250 millions d’années, on pense qu’avec les vers découverts dans le permafrost sibérien, il s’agit de la plus ancienne créature multicellulaire jamais ramenée à la vie. Auparavant, le record était de 25,5 ans dans l’Arctique. L’analyse génétique montre que ces vers appartiennent à une espèce jusque-là inconnue, et qui a été baptisée Panagrolaimus kolymaensis.
Selon les scientifiques, l’étude prouve que les vers peuvent rester en sommeil non seulement pendant des décennies, voire des centaines d’années, mais des ères géologiques entières, en attendant que les conditions s’améliorent. L’étude démontre aussi que les nématodes ont développé des mécanismes qui leur permettent de préserver la vie pendant des périodes géologiques.
Plusieurs espèces anciennes ont été ramenées à la vie ces dernières années. En 2020, des scientifiques japonais et américains ont réanimé des microbes vieux de 200 millions d’années trouvés dans des sédiments à 100 mètres sous le fond de l’océan dans le gyre – un courant océanique.- du Pacifique Sud.
Les résultats de l’étude ne montrent pas seulement que la vie peut attendre dans les environnements les plus extrêmes sur Terre, mais laisse aussi supposer qu’on peut la trouver sur des planètes inhospitalières, telles que Mars et d’autres parties du système solaire.
Certains scientifiques ont toutefois mis en garde contre la réanimation d’espèces « voyageuses dans le temps », car cela pourrait libérer d’anciens virus susceptibles de menacer la santé humaine et l’environnement. De la même façon, le réchauffement climatique, en provoquant la fonte des glaciers et du pergélisol, pourrait permettre la réémergence de microbes en sommeil depuis très longtemps.
Une nouvelle étude publiée dans Plos Genetics par le Centre commun de recherche de la Commission européenne a utilisé l’intelligence artificielle pour simuler ce qui se passerait si d’anciens virus contaminaient des environnements modernes. Ils ont découvert que de nombreux anciens agents pathogènes pourraient survivre et évoluer dans de tels environnements ; 1% d’ entre eux seraient capables d’éliminer un tiers des espèces.
Source : The Telegraph.

————————————————–

46,000-year-old worms dug up from the Siberian permafrost were brought back to life by scientists of the Max Planck Institute of Molecular Cell Biology (MPI-CBG) in Dresden (Germany) and are becoming the oldest-known creatures to have existed. The roundworms were discovered by Russian scientists inside a deep glacial deposit near the Kolyma River in 2018, but it was unclear what they were, or how long they had been trapped in the ice.

Now genetic sequencing has shown they are an entirely new species of nematode worm which has lain dormant since the last Ice Age. Radiocarbon dating of plant material found on the same level of the worms has shown that the frozen deposits had not thawed since the late Pleistocene. It means they existed when Neanderthals, woolly mammoths and saber-toothed tigers still roamed the region.

The tiny worms, which are less than a millimetre in length, were thawed out and coaxed back to life in a petri dish filled with a nutritious soup designed to encourage their growth. After a few weeks in the dish, they began moving and eating. The worms died within a few months, however scientists said the species has reproduced and is now undergoing lab experiments. The nematode study was published in the journal Plos Genetics.

Nematode worms are one of several creatures known to be able to survive harsh conditions by entering a hibernation-like state called cryptobiosis. In 2021, Bdelloid rotifers, a class of microscopic invertebrates, were found in the Arctic and brought back after 24,000 years.

Although scientists have revived single cell microbes and bacteria dating back 250 million years, it is thought to be the oldest multicellular creature ever reanimated. Previously the longest known record for nematode worms staying in cryptobiosis was 25.5 years in the Arctic.

Genetic analysis shows the ancient worms belong to a previously unknown species, which has been named Panagrolaimus kolymaensis.

Experts say that the study proves that the worms can lie dormant not just for decades, or hundreds of years, but entire geological eras, waiting for conditions to improve. The research demonstrates that nematodes have developed mechanisms that allow them to preserve life for geological time periods.

Several ancient species have been revived in recent years. In 2020, Japanese and US scientists reanimated 200-million-year-old microbes found in sediments 100 meters beneath the ocean floor within the South Pacific Gyre, an ocean current.

The findings do not show that life can lie waiting in the most extreme environments on Earth but gives new hope that it could be found on inhospitable planets, such as Mars and other parts of the solar system.

However, some scientists have cautioned against reanimating “time-travelling” species, warning that it could unleash ancient viruses that could threaten human health and the environment.

There are fears that global warming may cause glaciers and permafrost to melt, allowing long dormant microbes to re-emerge.

A new study published in Plos Genetics by the European Commission Joint Research Centre used artificial intelligence to simulate what would happen if ancient viruses were unleashed onto modern communities. They found that ancient invading pathogens could often survive and evolve in the modern community with 1 per cent capable of wiping out one third of the species.

Source : The Telegraph.

Source : Institut Max Planck de biologie cellulaire de Dresde

L’Afrique se coupera-t-elle en deux ? // Will Africa split in two ?

C’est un phénomène géologique bien connu : une zone de faille géante déchire lentement l’Afrique. Cette dépression, le Rift est-africain, inclut un réseau de vallées qui s’étend sur environ 3 500 kilomètres, depuis la Mer Rouge jusqu’au Mozambique.

Le Rift dans la région de l’Ol Doinyo Lengai (Photo : C. Grandpey)

L’Afrique va-t-elle finir par se déchirer complètement ? Pour répondre à cette question, il faut observer les plaques tectoniques de la région. Le long du Rift est-africain, la plaque somalienne s’écarte de la plaque nubienne. D’autre part,les plaques somalienne et nubienne s’éloignent de la plaque arabique au nord. Ces plaques se rencontrent dans la région Afar en Éthiopie, en formant un système de failles en Y.

 

Source : Wikipedia

Le Rift est-africain a commencé à se former il y a environ 35 millions d’années entre l’Arabie et la Corne de l’Afrique dans la partie orientale du continent. Au cours de sa formation, le Rift s’est étendu vers le sud et a atteint le nord du Kenya il y a environ 25 millions d’années.
Le Rift est africain se compose de deux ensembles à peu près parallèles de fractures dans la croûte terrestre. Le rift oriental traverse l’Éthiopie et le Kenya, tandis que le rift occidental forme un arc de cercle entre l’Ouganda et le Malawi. La branche orientale est aride, tandis que la branche occidentale se situe en limite de la forêt tropicale congolaise.

L’existence des rifts est et ouest et la découverte de zones sismiques et volcaniques offshore indiquent que l’Afrique s’ouvre lentement sur plusieurs lignes, à un rythme de plus de 6,35 millimètres par an. C’est à peu près à la vitesse de croissance des ongles. 

Source : Wikipedia

Le Rift est-africain s’est probablement formé suite à une remontée de magma en provenance de l’asthénosphère (partie supérieure du manteau terrestre) entre le Kenya et l’Éthiopie. Cette chaleur a provoqué l’expansion et l’élévation de la croûte sus-jacente, ce qui a entraîné l’étirement et la fracturation de la roche continentale. Cela a conduit à une importante activité volcanique, avec la formation du Kilimandjaro.
Le déchirement de l’Afrique pourrait se produire de différentes façons. Selon un scénario, la majeure partie de la plaque somalienne pourrait se séparer du reste du continent africain, avec formation d’une mer entre les deux masses de terre. Cette nouvelle masse continentale comprendrait la Somalie, l’Érythrée, Djibouti et les parties orientales de l’Éthiopie, du Kenya, de la Tanzanie et du Mozambique. Selon un autre scénario, l’est de la Tanzanie et le Mozambique seraient seuls à se séparer.
Les scientifiques expliquent que si le continent africain se rompt, le rift en Éthiopie et au Kenya pourrait entraîner la formation d’une plaque somalienne dans les 1 à 5 millions d’années à venir. Cependant, il se peut aussi que l’Afrique ne se scinde pas en deux. Les forces géologiques à l’origine du processus de rift pourraient s’avérer trop lentes pour séparer les plaques somalienne et nubienne. On aurait alors un exemple de rift avorté. De tels rifts avortés peuvent être observés ailleurs dans le monde, comme le Midcontinent Rift, qui s’incurve sur environ 3 000 km au sein de l’Upper Midwest en Amérique du Nord.
La branche orientale du Rift est-africain est un exemple de rift avorté, alors que la branche occidentale est toujours active. Selon la Geological Society de Londres, « on ne sait pas si le Rift continuera à s’ouvrir à son rythme actuel pour éventuellement donner naissance à un bassin océanique comme la Mer Rouge et, plus tard, quelque chose de beaucoup plus grand, comme une petite version de l’Océan Atlantique. Le processus peut-il s’accélérer…ou s’arrêter ? » Personne ne le sait.
Source : Yahoo Actualités, Live Science.

———————————————–

It is a well-known geological phenomenon : a giant rift is slowly tearing Africa apart. This depression, known as the East African Rift, is a network of valleys that stretches over about 3,500 kilometers, from the Red Sea to Mozambique.

Will Africa rip apart completely? To answer this question, one needs to have a look at the region’s tectonic plates. Along the East African Rift, the Somalian tectonic plate is pulling eastward from the Nubian tectonic plate. The Somalian and Nubian plates are also separating from the Arabian plate in the north. These plates intersect in the Afar region of Ethiopia, creating a Y-shaped rift system. (see map above)

The East African Rift started forming about 35 million years ago between Arabia and the Horn of Africa in the eastern part of the continent. This rifting extended southward over time, reaching northern Kenya about 25 million years ago.

The rift consists of two broadly parallel sets of fractures in Earth’s crust. The eastern rift passes through Ethiopia and Kenya, while the western rift runs in an arc from Uganda to Malawi. The eastern branch is arid, while the western branch lies on the border of the Congolese rainforest. The existence of the eastern and western rifts and the discovery of offshore zones of earthquakes and volcanoes indicate that Africa is slowly opening along several lines, at a rate of more than 6.35 millimeters per year. This means the current rifting is very slow, about the rate that one’s toenails grow.

The East African Rift most likely formed because of heat flowing up from the asthenosphere (upper part of Earth’s mantle) between Kenya and Ethiopia. This heat caused the overlying crust to expand and rise, leading to stretching and fracturing of the brittle continental rock. This led to substantial volcanic activity, including the formation of Mount Kilimanjaro.

If Africa does rip apart, there are different ideas for how that might happen. One scenario has most of the Somalian plate separating from the rest of the African continent, with a sea forming between them. This new landmass would include Somalia, Eritrea, Djibouti, and the eastern parts of Ethiopia, Kenya, Tanzania and Mozambique. Another scenario has only eastern Tanzania and Mozambique separating.

Scientists say that if the African continent does rupture, the rift in Ethiopia and Kenya may split to create a Somali plate in the next 1 million to 5 million years. However, Africa may not split in two. The geological forces driving the rifting might prove too slow to separate the Somalian and Nubian plates. This would be an example of a failed rift. Such failed rifts can be observed elsewhere in the world, like the Midcontinent Rift, which curves for about 3,000 km across the Upper Midwest of North America.

The eastern branch of the East African Rift is a failed rift. However, the western branch is still active. According to the Geological Society of London, « what we do not know is if this rifting will continue on its present pace to eventually open up an ocean basin, like the Red Sea, and then later to something much larger, like a small version of the Atlantic Ocean. Or might it speed up and get there more quickly? Or it might stall out? »Nobody can tell.

Source : Yahoo News, Live Science.

Nouvelle approche de l’Himalaya // New approach to the Himalayas

Selon une nouvelle étude publiée le 10 août 2023 dans la revue Nature Geoscience, la chaîne de l’Himalaya, qui comprend les plus hautes montagnes du monde, n’est pas née comme le pensaient les géologues jusqu’à présent. Les plaques tectoniques indienne et eurasienne qui sont entrées en collision il y a 45 à 59 millions d’années se poussaient déjà mutuellement auparavant et avaient fait s’élever les sommets jusqu’à plus de la moitié de leur altitude actuelle. Ce n’est qu’ensuite que se produisit le grand choc qui les propulsa à leur hauteur définitive..
Cela signifie que l’Himalaya a probablement commencé son ascension dans le ciel il y a environ 63 à 61 millions d’années, donc bien plus tôt qu’on ne le pensait auparavant, en raison de la subduction de la partie océanique de la plaque indienne.
Jusqu’à aujourd’hui, on pensait que la collision continentale entre la plaque indienne et la plaque eurasienne avait été suffisante pour faire s’édifier une chaîne de montagnes d’une telle hauteur. Les auteurs de la nouvelle étude ont découvert que l’Himalaya avait atteint environ 60 % de son altitude actuelle avant la collision des plaques continentales. La découverte peut influencer notre compréhension du climat de la région dans le passé, et remettre en question les hypothèses sur la formation d’autres régions montagneuses, telles que la Cordillère des Andes et la Sierra Nevada.
L’étude montre que les bordures des deux plaques tectoniques étaient déjà relativement élevées avant la collision qui a créé l’Himalaya, et atteignaient en moyenne environ 3 500 mètres de hauteur. L’Himalaya a actuellement une altitude moyenne de 6 100 mètres, avec la plus haute montagne du monde, le mont Everest, qui culmine à 8 849 mètres.
Les chercheurs ont reconstitué le passé de la chaîne himalayenne en mesurant la quantité d’isotopes, d’oxygène dans les roches sédimentaires, selon une technique qui est généralement utilisée pour étudier les météorites. Le versant exposé au vent d’une montagne reçoit plus de pluie que le versant opposé ou versant sous le vent. La composition chimique de cette pluie change à mesure que l’air s’élève sur la pente exposée au vent car les isotopes plus lourds de l’oxygène diminuent à des altitudes plus basses et les isotopes plus légers chutent près du sommet. En suivant cette évolution, les chercheurs ont déterminé l’altitude historique des roches. Ils ont découvert que leur composition il y a environ 62 millions d’années correspondait à une altitude de 3 500 m. Ce soulèvement initial peut avoir été causé par la partie océanique de la plaque indienne qui, à l’époque, se frayait un chemin, avec un angle faible, sous les plaques continentales et repoussait vers le haut la plaque qui la surmontait. C’est ainsi que la partie océanique de la plaque indienne a amorcé la convergence. Cela a abouti à l’élévation d’environ 60% mentionnée dans l’étude.
L’étude explique qu’une énorme collision est intervenue par la suite, il y a 45 à 59 millions d’années. Elle a poussé les bordures des plaques tectoniques indienne et eurasienne de 1 km supplémentaire. Ces forces tectoniques sont permanentes et contribuent encore aujourd’hui à la croissance des montagnes himalayennes.
Cette découverte pourrait permettre d’expliquer plusieurs phénomènes climatiques, en particulier l’établissement du système de mousson en Asie de l’Est et du Sud. Cela pourrait également remodeler les théories sur le climat et la biodiversité en vigueur jusqu’à présent.
Source : Live Science, via Yahoo Actualités.

———————————————–

According to a new study published on August 10th, 2023 in the journal Nature Geoscience, the Himalayas, which include the world’s tallest mountains, were not born the way geoscientists thought. The tectonic plates that collided to form the peaks 45 million to 59 million years ago were already pushing against each other, causing the Himalayan mountains to rise to more than half their current elevation, before the big collision gave them a violent shunt upward.

This means the Himalayas may have started their ascent into the sky far earlier than previously believed , around 63 million to 61 million years ago, due to the subduction of the oceanic part of the Indian tectonic plate.

Previously it was assumed that the continental collision between the India plate with the Eurasian plate was required for such high elevation to be obtained. However, the authors of the new study found that the Himalayas attained roughly 60% of their current elevation before the continental plates collided. The discovery may influence our understanding of the region’s climate in the past, and challenges assumptions about how other mountainous areas, such as the Andes and the Sierra Nevada, formed.

The study shows for the first time that the edges of the two tectonic plates were already quite high prior to the collision that created the Himalayas, about 3.5 kilometers on average. The Himalayas now have an average elevation of 6,100 meters and host the world’s tallest mountain, Mount Everest, which towers 8,849 m above sea level.

The researchers reconstructed the mountain range’s past by measuring the amount of isotopes, of oxygen in sedimentary rocks, a technique typically used to study meteorites. The windward slope of a mountain gets more rain than the opposite side or leeward slope. The chemical composition of this rain changes as the air moves up the windward slope towards the mountain’s peak, with heavier isotopes of oxygen declining at lower altitudes and lighter isotopes dropping out near the top. By tracking these changes, the researchers determined the historic altitude of rocks. They found the makeup around 62 million years ago was consistent with an elevation of 3,500 m. This initial uplift may have been caused by the oceanic part of the Indian tectonic plate, which at that time was pushing its way underneath the continental slabs at a low angle and forcing the overriding plate up. So, the oceanic part of the India plate initiated convergence. This gave the roughly 60% elevation that was found in the study.

The study explains that a huge collision 45 million to 59 million years ago forced the edges of the Indian and Eurasian tectonic plates up by an additional 1 km. These tectonic forces are ongoing and contribute to the growth of the mountains even today.

The discovery could help explain several climatic phenomena, including the establishment of the east and south Asian monsoon system. It could also reshape theories about past climate and biodiversity.

Source : Live Science, via Yahoo News.

 

Image de l’Himalaya obtenue par le satellite Landsat 9 de la NASA