Un atlas mondial pour estimer le volume d’eau des glaciers // A world atlas to estimate glacier water volumes

Comme je l’ai indiqué à plusieurs reprises sur ce blog, l’évolution des glaciers de montagne est un enjeu majeur : ils servent dans de nombreux pays de réservoir d’eau potable, ont un impact économique, via le tourisme notamment, et participent à la montée du niveau des mers. Dans les pays comme le Pérou, le long de la Cordillère des Andes, ils jouent un rôle essentiel pour l’approvisionnement en eau potable, pour la production d’électricité et pour l’irrigation des cultures. Sans les glaciers, la vie deviendra impossible dans les campagnes et les populations rurales devront migrer vers les villes, Lima en particulier, dont l’alimentation en eau dépend, elle aussi des glaciers andins.

Afin de mieux connaître les réserves en eau représentées par les glaciers, des scientifiques de l’Institut des Géosciences de l’Environnement de Grenoble et du Dartmouth College (USA) ont réalisé un atlas mondial mesurant la vitesse d’écoulement et l’épaisseur de plus de 200 000 glaciers. Ils ont aussi publié un article dans la revue Nature Geoscience.

Malgré leur taille réduite (727 000 km²) face à celle cumulée des deux grandes calottes de l’Antarctique (14 millions de km²) et du Groenland (1,7 millions de km²), la fonte des glaciers de montagne a contribué à 30% de l’élévation du niveau des mers depuis les années 1960.

Même si l’impact des glaciers n’est pas décisif, leur évolution est primordiale au niveau local et leur devenir est une source de préoccupation grandissante pour les zones de montagne et les régions en aval.

Jusqu’à présent, on n’avait qu’une idée très limitée du volume de glace stocké dans les glaciers. Ceci vient notamment du fait que les glaciers sont répartis sous toutes les latitudes, dans des régions souvent difficiles d’accès. Travailler directement sur le terrain est donc très complexe. En conséquence, les mesures d’ épaisseur de la glace n’existent actuellement que sur à peine plus d’1% des glaciers à la surface de la Terre.

À cause de ce manque de données, les scientifiques ont développé des méthodes indirectes pour estimer les quantités de glace sur Terre. Ces méthodes ont d’abord été basées sur l’aire des glaciers, obtenue à partir de photos aériennes ou d’images satellites.

À partir des années 2000, des méthodes basées sur la pente en surface du glacier ont vu le jour, Au-delà de la pente, la vitesse à laquelle s’écoule le glacier constitue une information encore plus pertinente pour estimer la distribution des épaisseurs de glace. En effet, les glaciers s’écoulent sous l’effet de leur propre poids. Par conséquent, cartographier la vitesse à laquelle s’écoule le glacier est essentiel pour mieux estimer la distribution de l’épaisseur de glace et donc le volume des glaciers.

Cependant, les observations sur le terrain de ces vitesses d’écoulement sont, elles aussi, très limitées, mais les innombrables clichés fournis par les satellites ont ouvert de nouvelles perspectives pour mesurer l’écoulement de tous les glaciers de la Terre.

Pour quantifier la vitesse d’écoulement de l’ensemble des glaciers du monde, les chercheurs ont utilisé plus de 800 000 images satellites acquises entre 2017 et 2018 par les satellites Landsat-8 de la NASA et les satellites Sentinel-1 et Sentinel-2 de l’Agence spatiale européenne (ESA). Cette nouvelle génération de satellites constitue une révolution pour l’observation des glaciers, avec des images de l’ensemble des terres émergées acquises à des intervalles de temps réguliers (de 5 à 16 jours).

Plusieurs millions d’heures de calculs sur les serveurs de l’Université Grenoble Alpes ont été nécessaires pour permettre d’assembler un atlas unique de l’écoulement de plus de 200,000 glaciers autour de la Terre.

L’un des principaux apports de cet atlas est la couverture d’une très grande diversité de glaciers, allant de petits glaciers Andins jusqu’à des calottes de l’Arctique canadien ou des champs de glace en Patagonie qui couvrent plusieurs milliers de kilomètres carrés. Ces cartographies permettent ainsi de mieux connaître la manière dont s’écoulent les glaciers. Elles illustrent aussi la grande variété de comportements, avec des glaciers qui s’écoulent à quelques dizaines de mètres par an (comme certains glaciers des Alpes), et d’autres dont la vitesse d’écoulement atteint plusieurs kilomètres en une seule année (comme certains glaciers de Patagonie).

Par ailleurs, cet atlas exhaustif des vitesses d’écoulement glaciaire a permis de redessiner la cartographie de la distribution des épaisseurs de glace et donc du volume des glaciers. En effet, en combinant les informations sur la vitesse d’écoulement en surface des glaciers avec celle de la pente de surface, dans un modèle numérique simulant la manière avec laquelle la glace glisse et se déforme, les chercheurs ont proposé une nouvelle représentation de la géométrie des glaciers.

En de multiples régions, les résultats de ce travail viennent apporter des estimations significativement différentes des précédentes, avec des conséquences importantes sur la disponibilité en eau potable pour la consommation, mais aussi pour l’agriculture ou la production hydro-électrique. Ainsi, dans les Andes que je mentionnais au début de cette note, les nouvelles estimations sont plus alarmantes que précédemment, avec des stocks d’eau glaciaire près d’un quart plus faibles, augmentant ainsi la pression sur les ressources en eau dans ces régions.

Au-delà d’un nouvel inventaire du volume des glaciers, cette étude est cruciale pour mieux simuler leur évolution future et, en particulier, identifier quels sont les secteurs où les glaciers vont disparaître et ceux où ils devraient persister.

Source: The Conversation.

 ———————————————

As I have indicated several times on this blog, the evolution of mountain glaciers is a major issue: in many countries: they serve as reservoirs of drinking water, have an economic impact through tourism and participate in sea level rise. In countries like Peru, along the Andes, they play an essential role in the supply of drinking water, the production of electricity and the irrigation of crops. Without glaciers, life will become impossible in the countryside and rural populations will have to migrate to cities, Lima in particular, whose water supply also depends on Andean glaciers.
In order to better understand the water reserves represented by glaciers, scientists from the Institute of Environmental Geosciences in Grenoble and Dartmouth College (USA) have produced a world atlas measuring the flow speeds and thicknesses of more of 200,000 glaciers. They also published an article in the journal Nature Geoscience.
Despite their reduced size (727,000 km²) compared to that of the two large ice caps of Antarctica (14 million km²) and Greenland (1.7 million km²), the melting of mountain glaciers has contributed 30% sea level rise since the 1960s.
Even if the impact of glaciers is not decisive, their evolution is essential at the local level and their future is a source of growing concern for mountain areas and downslope regions.
Until now, we had only a very limited idea of the volumes of ice stored in glaciers. This is due in particular to the fact that glaciers are distributed at all latitudes, in regions that are often difficult to access. Working directly in the field is therefore very complex. As a result, ice thickness measurements currently exist on just over 1% of glaciers on the Earth’s surface.
Because of this lack of data, scientists have developed indirect methods to estimate the amounts of ice on Earth. These methods were first based on the area of glaciers, obtained from aerial photos or satellite images.
From the 2000s, methods based on the surface slope of the glacier have emerged. Beyond the slope, the speed at which the glacier is flowing provides even more relevant information for estimating the distribution of the thickness of glacier. ice. Indeed, glaciers flow under the effect of their own weight. Therefore, mapping the speed at which the glacier is flowing is essential to better estimate the distribution of ice thickness and therefore the volume of glaciers.
However, field observations of these flow velocities are also very limited, but the countless images provided by satellites have opened up new possibilities for measuring the flow of all the Earth’s glaciers.
To quantify the flow velocity of all of the world’s glaciers, the researchers used more than 800,000 satellite images acquired between 2017 and 2018 by NASA’s Landsat-8 satellites and the Sentinel-1 and Sentinel-2 satellites of the European Space Agency (ESA). This new generation of satellites constitutes a revolution for the observation of glaciers, with images of all emerged land acquired at regular time intervals (from 5 to 16 days).
Several million hours of calculations on the servers of the University of Grenoble Alpes were needed to assemble a unique atlas of the flow of more than 200,000 glaciers around the Earth.
One of the main contributions of this atlas is the coverage of a very great diversity of glaciers, ranging from small Andean glaciers to ice caps in the Canadian Arctic or ice fields in Patagonia which cover several thousand square kilometers. . These maps thus make it possible to better understand the way in which glaciers flow. They also illustrate the wide variety of behaviours, with glaciers flowing at a few tens of meters per year (like some glaciers in the Alps), and others whose flow speeds reach several kilometers in a single year (like some Patagonian glaciers).
In addition, this exhaustive atlas of ice flow velocities has made it possible to re-estimate the mapping of the distribution of ice thickness and therefore the volume of glaciers. Indeed, by combining information on the surface flow velocity of glaciers with that of the surface slope, in a digital model simulating the way in which the ice slides and deforms, the researchers have proposed a new representation of the glacier geometry.

In many regions, the results of this work provide estimates that are significantly different from previous ones, with major consequences on the availability of drinking water for consumption, but also for agriculture or hydroelectric production. Thus, in the Andes that I mentioned at the beginning of this post, the new estimates are more alarming than previously, with glacial water stocks almost a quarter lower, thus increasing the pressure on water resources in these regions. .
Beyond a new inventory of the volume of glaciers, this study is crucial to better simulate the future evolution of glaciers and, in particular, to identify the regions where the glaciers will disappear and those where they are likely to persist.
Source: The Conversation.

La fonte des glaciers alpins, comme ici le glacier Aletsch en Suisse, risque de poser des problèmes d’alimentation en eau dans les vallées (Photo: C. Grandpey)

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.