Des drones sur le Kilauea (Hawaii) pendant l’éruption de 2018 // Drones on Kilauea Volcano (Hawaii) during the 2018 eruption

Cela fait des décennies que des hélicoptères et des avions véhiculent les volcanologues du HVO, ce qui leur a permis de bonnes observations visuelles et thermiques, d’entretenir les équipement sur le terrain et d’effectuer des mesures géophysiques et géochimiques. L’éruption du Kilauea en 2018 a été l’occasion d’adopter une nouvelle technologie aéroportée – les drones, aussi appelés UAS (Unmanned Aircraft Systems en américain) – pour mieux surveiller l’évolution de l’éruption.
Auparavant, l’Université d’Hawaii à Hilo avait utilisé des drones pour cartographier la coulée de lave de Pāhoa en 2014. D’autres organismes externes ont également effectué de courtes campagnes à l’aide de drones au sommet du Kilauea et sur le Pu’uO’o avec l’autorisation du Parc National des Volcans d’Hawaii*. Toutefois, avant l’éruption de 2018, l’USGS n’avait pas utilisé de drones pour surveiller une éruption à Hawaii.
La dernière éruption du Kilauea fut donc l’occasion pour l’USGS d’utiliser des drones pour la première fois. Pendant la majeure partie de l’événement, les scientifiques équipés de drones ont travaillé 24 heures sur 24, 7 jours sur 7, parfois en plusieurs équipes afin d’effectuer des mesures simultanément au sommet et sur la Lower East Rift Zone (LERZ). La fonction de base des drones lors de l’éruption de 2018 a été de fournir des images et des vidéos en continu. Cela a permis d’observer des phénomènes éruptifs inaccessibles à cause de leur dangerosité. D’un point de vue pratique, les images fournies par les drones ont également permis une meilleure connaissance de la situation et de définir les mesures à prendre en conséquence. Les drones ont permis d’identifier les secteurs où de nouvelles émissions de lave se produisaient ou étaient susceptibles de se produire. Dans un cas, un drone de l’USGS a contribué à l’évacuation d’un habitant de Puna menacé par une coulée de lave qui se rapprochait dangereusement de sa maison.
Certains drones ont été équipées de caméras thermiques. Leurs images ont été utilisées pour créer des cartes détaillées des coulées de lave. L’imagerie thermique a également été utilisée pour identifier les parties les plus chaudes et les plus actives du champ d’écoulement. Cela fut particulièrement utile lorsque les images à l’oeil nu ne permettaient pas de différencier suffisamment les coulées légèrement plus anciennes des plus récentes.
Parmi les autres applications techniques des images fournies par les drones, on notera la création de modèles numériques de hauteur de lave (DEM) et la mesure de la vitesse de la lave dans les chenaux. En utilisant des images pour déterminer la hauteur de la lave nouvellement écoulée, les nouveaux relevés DEM ont pu être comparés aux DEM précédant l’éruption pour calculer le volume de la lave émis. Au sommet du Kilauea, les DEM ont permis au HVO d’effectuer des mesures de la caldeira en phase d’effondrement et de déterminer l’ampleur de cet effondrement. Le long de la zone de rift, les vidéos réalisées au-dessus de chenaux où la lave s’écoulait rapidement ont permis de calculer la quantité et la vitesse de la lave au sortir des fissures.
Au-delà des possibilités offertes au niveau des images, l’éruption de 2018 a permis pour la première fois à l’USGS d’installer des capteurs de gaz sur des drones à Hawaii. Les fractures étaient trop dangereuses pour une approche à pied pour mesurer la chimie des gaz. En revanche, un capteur multi-gaz monté sur un drone a permis de déterminer la chimie des panaches éruptifs. De même, au sommet, en raison d’effondrements et des risques d’explosion, les mesures de gaz au sol dans la caldeira du Kilauea n’étaient pas possibles. Les mesures effectuées à l’aide de drones étaient la seule méthode fiable pour mesurer l’emplacement, la composition chimique et la quantité de gaz volcaniques émis au sommet.
Source: USGS / HVO.

* Il est bon de rappeler ici que l’utilisation de drones est formellement interdite aux touristes à l’intérieur des parcs nationaux aux Etats Unis. L’infraction à la loi entraîne une forte amende et la confiscation de l’appareil. C’est ce qui est arrivé à un visiteur de la terrasse du Jaggar Museum il ya deux ans, pour ne pas avoir tenu compte des injonctions des rangers.

——————————————–

Helicopters and other aircraft have transported HVO volcanologists for decades, giving them access for visual and thermal observations, equipment maintenance, and other geophysical and geochemical measurements. The 2018 eruption of Kīiauea presented an opportunity to adopt a new airborne technology – Unmanned Aircraft Systems (UAS or drones) – to better monitor the eruption.
Previously, the University of Hawaii at Hilo used UAS to map the 2014 Pāhoa lava flow. Other external collaborators have also previously flown short campaigns at Kilauea’s summit and at Pu’uO’o with permission of Hawaiii Volcanoes National Park. But before the 2018 eruption, the USGS itself had not employed UAS to monitor an eruption in Hawaii.
In 2018, however, UAS teams were mobilized for the Kilauea eruption response. Through most of the activity, UAS crews worked 24/7, sometimes splitting into multiple teams so that measurements could be made at both the summit and Lower East Rift Zone (LERZ) simultaneously. The most basic capability of the UAS during the 2018 eruption was simple video imaging and streaming. This allowed for documentation of eruptive features that would not otherwise have been accessible for study due to hazardous conditions. In a more practical sense, UAS imaging also offered better situational awareness for the eruption response. UAS images helped identify where new lava breakouts were happening or were likely to occur. In one instance, a USGS UAS helped with the evacuation of a Puna resident as a lava flow quickly approached.
Some of the UAS were outfitted with thermal cameras, which provided images that were used to create detailed maps of the lava flows. Thermal imagery was also used to identify the hottest, most active portions of the flow field, which was particularly useful when visible images were not able to differentiate between slightly older and slightly newer flows.
More technical applications of UAS-based imaging included the creation of digital elevation models (DEMs) and measurements of lava flow speeds within channels. By using imagery to determine the height of newly emplaced lava, the new DEMs could be compared to pre-eruption DEMs to calculate the volume of lava erupted. At Kilauea’s summit, DEMs helped HVO assess the new landscape of the collapsing caldera and determine just how much collapse was occurring. Along the rift zone, videos taken above fast-flowing lava channels helped with calculations of how much and how quickly lava was erupting from the fissures.
Beyond the UAS imaging opportunities, the 2018 eruption was the first time that the USGS mounted gas sensors on UAS in Hawaii. The fissures were too dangerous to approach on foot to measure the gas chemistry, but a multi-gas sensor mounted on a UAS helped determine the chemistry of the eruptive plumes. Likewise, at the summit, with collapse events and potential explosion hazards, ground-based gas measurements within Kilauea caldera were not possible. UAS-based measurements were the only safe method for measuring the location, chemistry, and amount of volcanic gas released at the summit.
Source: USGS / HVO.

Volcanologues de l’USGS préparant un drone (Crédit photo: USGS)

Répondre

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google

Vous commentez à l'aide de votre compte Google. Déconnexion /  Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.