On peut lire sur le site web Tokyo Tech News que des scientifiques de l’Institut des Sciences de la Terre et de la Vie (ELSI) de l’Institut de Technologie de Tokyo ont fait part, dans la revue Nature du 22 février 2017, de leurs surprenantes découvertes sur le noyau terrestre. L’étude s’attarde sur la source d’énergie qui alimente le champ magnétique terrestre, les facteurs qui régissent le refroidissement du noyau et sa composition chimique, ainsi que les conditions qui existaient pendant la formation de la Terre.
Le noyau terrestre consiste principalement en une énorme boule de métal liquide à 3000 km sous sa surface de la Terre, en dessous du manteau. À une telle profondeur, le noyau et le manteau sont soumis à des pressions et à des températures extrêmement élevées. De plus, les recherches ont montré que le lent déplacement de matière en fusion à très haute température – à raison de plusieurs centimètres par an – provoque un transfert de la chaleur du noyau vers la surface, ce qui a entraîné un refroidissement très progressif du noyau au cours des temps géologiques. Le degré de refroidissement du noyau terrestre depuis sa formation est l’objet de débats intenses parmi les scientifiques.
En 2013, un chercheur japonais a indiqué que le noyau terrestre a peut-être refroidi de 1000°C depuis sa formation il y a 4,5 milliards d’années. Cet important refroidissement serait nécessaire pour maintenir le champ géomagnétique, à moins qu’il existe une autre source d’énergie encore inconnue. Ces résultats ont constitué une grande surprise pour la communauté scientifique qui étudie les profondeurs de notre planète. .
Le refroidissement du noyau et les sources d’énergie nécessaires au champ géomagnétique ne furent pas les seuls obstacles rencontrés par l’équipe de l’Institut de Technologie de Tokyo. Une autre question encore non résolue était l’incertitude quant à la composition chimique du noyau. Selon l’auteur principal de l’étude, le noyau est, certes, principalement composé de fer et de nickel, mais il contient également environ 10% d’alliages légers comme le silicium, l’oxygène, le soufre, le carbone, l’hydrogène et d’autres composés. On pense que de nombreux alliages sont simultanément présents, mais nous ne connaissons pas la proportion de chaque élément.
Dans le cadre des dernières expériences effectuées dans un laboratoire de l’ELSI, les scientifiques ont utilisé des diamants taillés avec précision et en ont soumis de minuscules échantillons aux pressions qui existent au niveau du noyau terrestre. Les très hautes températures qui règnent à l’intérieur de la Terre ont été créées en chauffant les échantillons avec un rayon laser. En effectuant des expériences avec une gamme de compositions d’alliages dans diverses conditions, les chercheurs ont tenté d’identifier le comportement propre à différentes combinaisons d’alliages correspondant à l’environnement qui existe au niveau du noyau terrestre.
Le travail avec les alliages a commencé à donner des résultats intéressants lorsque les scientifiques ont commencé à utiliser plus d’un alliage. Dans les nouvelles expériences, ils ont décidé de combiner deux alliages différents contenant du silicium et de l’oxygène qui, selon eux, ont de très fortes chances d’exister dans le noyau.
Les chercheurs ont été surpris de constater, en examinant les échantillons dans un microscope électronique, que les petites quantités de silicium et d’oxygène présentes dans l’échantillon de départ s’étaient combinées pour former des cristaux de dioxyde de silicium avec la même composition que le quartz minéral que l’on rencontre à la surface de la Terre.
Ce résultat est important pour la compréhension de l’énergie et de l’évolution du noyau. Les calculs des chercheurs ont montré que la cristallisation des cristaux de dioxyde de silicium au niveau du noyau était susceptible de fournir une immense nouvelle source d’énergie pour alimenter le champ magnétique terrestre.
L’équipe scientifique a également exploré les implications de ces résultats pour la formation de la Terre et les conditions du début du système solaire. La cristallisation modifie la composition du noyau en éliminant progressivement le silicium et l’oxygène qui y sont dissous. Finalement, le processus de cristallisation s’arrêtera lorsque le noyau aura épuisé son ancien stock de silicium ou d’oxygène. Même si le silicium est présent, les cristaux de dioxyde de silicium ne peuvent pas se former sans la présence d’un peu d’oxygène. Cela donne des indices sur la concentration initiale d’oxygène et de silicium dans le noyau, parce que seuls quelques rapports silicium / oxygène sont compatibles avec ce modèle.
Sources: Tokyo Tech News & The Watchers.
————————————-
The Tokyo Tech News website informs us that scientists at the Earth-Life Science Institute (ELSI) at the Tokyo Institute of Technology reported in Nature (22 February 2017) their unexpected discoveries about the Earth’s core. The findings include insights into the source of energy driving the Earth’s magnetic field, factors governing the cooling of the core and its chemical composition, and conditions that existed during the formation of the Earth.
The Earth’s core consists mostly of a huge ball of liquid metal lying at 3 000 km beneath its surface, surrounded by the mantle. At such great depths, both the core and mantle are subject to extremely high pressures and temperatures. Furthermore, research indicates that the slow flow of hot buoyant rocks -moving several centimetres per year – carries heat away from the core to the surface, resulting in a very gradual cooling of the core over geological time. However, the degree to which the Earth’s core has cooled since its formation is an area of intense debate amongst Earth scientists.
In 2013, a Japanese researcher reported that the Earth’s core may have cooled by as much as 1000°C since its formation 4.5 billion years ago. This large amount of cooling would be necessary to sustain the geomagnetic field, unless there was another as yet undiscovered source of energy. These results were a major surprise to the deep Earth community.
Core cooling and energy sources for the geomagnetic field were not the only difficult issues faced by the team at the Tokyo Institute of Technology. Another unresolved matter was uncertainty about the chemical composition of the core. According to the lead author of the study, the core is mostly iron and some nickel, but also contains about 10% of light alloys such as silicon, oxygen, sulphur, carbon, hydrogen, and other compounds. We think that many alloys are simultaneously present, but we don’t know the proportion of each element.
Now, in this latest research carried out in a lab at ELSI, the scientists used precision cut diamonds to squeeze tiny dust-sized samples to the same pressures that exist at the Earth’s core. The high temperatures at the interior of the Earth were created by heating the samples with a laser beam. By performing experiments with a range of probable alloy compositions under a variety of conditions, the researchers are trying to identify the unique behaviour of different alloy combinations that match the distinct environment that exists at the Earth’s core.
The search of alloys began to yield useful results when the scientists began mixing more than one alloy. In the new experiments, they decided to combine two different alloys containing silicon and oxygen, which they strongly believed exist in the core.
The researchers were surprised to find that when they examined the samples in an electron microscope, the small amounts of silicon and oxygen in the starting sample had combined together to form silicon dioxide crystals, the same composition as the mineral quartz found at the surface of the Earth.
This result proved important for understanding the energetics and evolution of the core. The researchers’calculations showed that crystallization of silicon dioxide crystals from the core could provide an immense new energy source for powering the Earth’s magnetic field.
The team has also explored the implications of these results for the formation of the Earth and conditions in the early Solar System. Crystallization changes the composition of the core by removing dissolved silicon and oxygen gradually over time. Eventually, the process of crystallization will stop when then core runs out of its ancient inventory of either silicon or oxygen. Even if silicon is present, silicon dioxide crystals can’t be made without also having some oxygen available. This gives clues about the original concentration of oxygen and silicon in the core, because only some silicon/oxygen ratios are compatible with this model.
Source: Tokyo Tech News & The Watchers.
Rappel de la structure interne de la Terre (Source: Wikipedia)