Possible réduction du trou dans la couche d’ozone // Possible reduction of the ozone layer hole

drapeau francaisSelon une équipe internationale de scientifiques, on observe les premiers signes d’une réduction du trou dans la couche d’ozone au-dessus de l’Antarctique. Les chercheurs ont constaté en septembre 2015 que le trou avait diminué de plus de 4 millions de kilomètres carrés depuis 2000, année où la situation était la plus inquiétante. L’équipe a également montré pour la première fois que cette reprise avait quelque peu ralenti à certains moments, en raison des effets des éruptions volcaniques (celle du Calbuco au Chili, par exemple). Dans l’ensemble, cependant, le trou dans la couche d’ozone semble être sur la voie de la guérison.
La réduction correspond aux modélisations et est largement due à la diminution de la quantité de chlore dans l’atmosphère. En effet, à l’origine, l’agrandissement du trou dans la couche d’ozone a été attribué aux chlorofluorocarbures, les fameux CFC. En 1987, le protocole de Montréal, qui est entré en vigueur le 1er janvier 1989, a interdit l’utilisation des CFC. Il semble que les récents résultats optimistes soient le résultat du protocole. Cependant, comme l’a fait remarquer une scientifique française du CNRS sur une radio, il ne faudrait pas s’enthousiasmer trop vite. Il faudra attendre plusieurs années pour avoir confirmation de la tendance.

En cliquant sur ce lien, vous verrez une animation montrant la moyenne de septembre concernant le trou dans la couche d’ozone au niveau de l’Antarctique entre 1979 et 2015 :
https://zippy.gfycat.com/WaterloggedWindingKentrosaurus.webm

Source: Massachusetts Institute of Technology.

Par ailleurs, il faut insister sur le fait que les CFC et le trou dans la couche d’ozone n’ont rien à voir avec les gaz à effet de serre qui sont responsables du changement climatique actuel. Si nous pouvons être optimistes quant à la réduction du trou dans la couche d’ozone, le réchauffement climatique reste préoccupant et il n’y a actuellement aucune indication que la santé de la planète s’améliore.

—————————————–

drapeau anglaisAccording to an international team of scientists, there are the first clear signs that the hole in the Antarctic ozone layer is beginning to close. The team found that the September 2015 ozone hole had shrunk by more than 4 million square kilometres since 2000 when ozone depletion was at its peak. The team also showed for the first time that this recovery has slowed somewhat at times, due to the effects of volcanic eruptions (Calbuco’s in Chile, for instance). Overall, however, the ozone hole appears to be on a healing path.

The decline matches the model’s predictions and more than half the shrinkage is due solely to the reduction in atmospheric chlorine. Originally, the widening of the ozone hole was attributed to the CFCs. In 1987, the Montreal protocol, which entered into force on 1 January 1989, banned the use of CFCs. It seems that the recent positive results are the outcome of the protocol. However, as a French CNRS scientist put it on a French radio, we should not be enthusiastic too fast. More years will be necessary to confirm the trend.

By clicking on this link, you will see an animation showing September averages of the ozone hole in Antarctica from 1979 to 2015;

https://zippy.gfycat.com/WaterloggedWindingKentrosaurus.webm

Source : Massachusetts Institute of Technology.

Besides, one should insist that CFCs and the hole in the ozone layer have nothing to do with greenhouse gases which are responsible for the current climate change. If we can be optimistic about the reduction of the hole in the ozone layer, the situation about global warming is preoccupying and there is currently no indication that the world’s health is improving.

Acidification de l’Océan Arctique sibérien // Acidification of the Siberian Arctic Ocean

drapeau francaisJ’ai souvent insisté dans ce blog sur le rôle joué par la fonte du pergélisol dans le réchauffement climatique en raison des énormes quantités de méthane envoyées dans l’atmosphère.
Selon une nouvelle étude effectuée par une équipe scientifique de l’Université de l’Alaska à Fairbanks, l’Académie des Sciences de Russie et d’autres organismes en Russie et en Suède, la fonte du permafrost en Sibérie, conjuguée à l’effritement des côtes russes et l’effet érosif de grandes rivières – comme la Léna – qui se jettent dans l’Arctique, déverse de vastes quantités de carbone organique dans les eaux océaniques, accélérant leur acidification et mettant en danger dans un avenir proche l’ensemble de l’Océan Arctique.
Les scientifiques ont étudié pendant des années le plateau arctique de Sibérie orientale, une zone maritime qui représente environ le quart des eaux de l’Océan Arctique. Les observations faites depuis 1999 montrent que, dans certains secteurs, l’acidité a atteint des niveaux que les chercheurs ne pensaient pas observer avant l’année 2100, en partie à cause d’une très forte sous-saturation en aragonite.
L’aragonite est une forme de carbonate de calcium qui est omniprésente dans les eaux océaniques et qui contribue à maintenir leur pH à son niveau de base. Le carbone présent dans l’eau acidifie cette dernière et fait donc baisser le pH. La mesure de la saturation en aragonite donne une indication sur la teneur générale en calcium et, par voie de conséquence, sur l’augmentation de carbone dans l’eau. Lorsqu’il y a plus d’aragonite que l’eau peut en absorber, ont dit qu’elle est sursaturée ; l’excès de calcium est alors utilisé par les organismes marins pourvus de coquilles. Inversement, quand il y a moins d’aragonite que l’eau pourrait normalement absorber, elle est considérée comme sous-saturée. Comme le plateau arctique de Sibérie orientale joue un rôle important pour l’ensemble des eaux de l’Océan Arctique, les modifications chimiques pourraient avoir des effets profonds sur les écosystèmes marins de toute la région.
Les eaux de la Mer de Beaufort, la Mer des Tchouktches et la Mer de Béring sont déjà connues pour être vulnérables à l’acidification en raison de leurs températures froides qui gardent le carbone et d’autres composants. Les dernières recherches effectuées sur le plateau arctique de Sibérie orientale confirment l’accélération de l’acidification de l’Océan Arctique.
À l’échelle mondiale, on considère généralement que l’acidification des océans est un sous-produit des émissions de carbone dans l’atmosphère. Comme environ un quart du carbone est absorbé par les océans, les émissions anthropiques de dioxyde de carbone sont considérées comme la principale source d’acidification des océans dans le monde entier. Cependant, sur le plateau arctique de Sibérie orientale, le carbone déversé dans la mer par l’érosion du pergélisol et par les rivières qui y débouchent dépasse largement le carbone en provenance de l’atmosphère et peut à lui seul provoquer l’acidification.
Source: Alaska Dispatch Nouvelles: http://www.adn.com/

—————————————

drapeau-anglaisI have often insisted on the contribution of the thawing of the Arctic permafrost to the current global warming because of the huge quantities of methane it sends into the atmosphere.

According to a new study by a team of scientists from the University of Alaska Fairbanks, the Russian Academy of Sciences and other institutions in Russia and Sweden, as Siberian permafrost thaws, crumbling Russian coastlines and big rivers flowing north along eroding banks are dumping vast loads of organic carbon into marine waters, accelerating their acidification and signalling future danger for the entire Arctic Ocean.

The scientists have been studying for years the East Siberian Arctic Shelf, a marine area that accounts for about a quarter of the Arctic Ocean’s open waters. Observations made since 1999 showed signs that in some locations acidity has reached levels researchers didn’t expect to emerge until the year 2100, due in part to « extreme aragonite undersaturation. »

Aragonite is a form of calcium carbonate that is pervasive in the ocean and tilts the chemistry toward the base level of the pH scale. Carbon in the water tilts the pH scale toward the acid level. The degree to which the water is saturated with aragonite is a marker of overall calcium levels, and a marker of acidification caused by increasing loads of carbon in the water. When there is more aragonite than can be absorbed by the water, it is considered to be supersaturated, leaving excess amounts to be used by shell-bearing marine organisms. But when there is less aragonite than the water could normally absorb, it is considered undersaturated. Since the East Siberian Arctic Shelf is so important to the Arctic Ocean’s open water, the chemistry changes could have wide-ranging effects on marine ecosystems in the entire Arctic Ocean.

Marine waters in the far north – in areas like the Beaufort, Chukchi and Bering seas – are already known to be vulnerable to acidification because of their cold temperatures that hold carbon and other attributes. The research from the East Siberian Arctic Shelf now adds to evidence pointing to a faster-acidifying Arctic Ocean.

Globally, ocean acidification is generally considered a byproduct of carbon emissions into the atmosphere. Since about a quarter of that atmospheric carbon winds up absorbed by the ocean, human-caused carbon dioxide emissions are considered the major source of ocean acidification worldwide. However, on the East Siberian Arctic Shelf, the carbon washed into the sea by eroding permafrost and river outwash far outpaces the carbon coming from the atmosphere and is enough to cause acidification on its own.

Source: Alaska Dispatch News: http://www.adn.com/

Sibérie-arctique

Source: Climats et Voyages