Nouvelles découvertes sur les volcans des Comores // New discoveries on Comoros volcanoes

Un jour de 2018, un visiteur de mon blog m’a contacté pour me demander ce qui se passait à Mayotte. Sa fille, médecin à l’hôpital, était inquiète car l’île était régulièrement secouée par des séismes qui provoquaient des crises d’angoisse chez les patients venus la consulter. En fait, l’île de Mayotte connaissait une crise sismique inédite qui a fait se poser beaucoup de questions au monde scientifique. Personne ne connaissait vraiment la cause des secousses. Ce n’est que plusieurs mois plus tard que le navire de recherche Marion Dufresne arriva enfin sur zone. Les scientifiques à bord se rendirent compte que la source de la sismicité se trouvait au fond de l’océan, à une cinquantaine de kilomètres à l’est de Mayotte. Un énorme volcan sous-marin venait d’apparaître sur le plancher océanique, avec d’abondantes émissions de lave. La vidange de la chambre magmatique provoquant un affaissement de la caldeira, l’île de Mayotte basculait vers l’Est, accentuant l’angoisse au sein de la population.

En 2018, au moment de ces événements, on pensait que l’archipel des Comores, dont fait partie Mayotte, était d’origine volcanique, potentiellement liée à un point chaud. Or, cette hypothèse a été démentie par les récentes études sur la région. Elles ont permis d’acquérir de nouvelles données permettant de mieux caractériser la nature de la croûte océanique dans cette zone. Les mesures recueillies ont permis d’établir que le volcanisme des Comores n’est certainement pas lié à une activité de point chaud. Elles mettent en lumière la complexité de la croûte terrestre dans la zone, et notamment la présence d’une très ancienne croûte océanique, d’environ 170 millions d’années.

Les dernières données révèlent la présence d’un immense corridor volcanique s’étendant tout le long de l’archipel des Comores, jusqu’à Madagascar. Plus de 2 200 volcans sous-marins ont été identifiés sur une zone de 200 kilomètres de large et 600 kilomètres de long. Ces volcans semblent s’aligner au niveau de la jonction entre les plaques tectoniques Somalie et Lwandle. En plus du nouveau volcan, siège de la dernière éruption, les scientifiques pensent qu’il y a eu plusieurs épisodes volcaniques récents le long de ce corridor. En conséquence, l’archipel des Comores serait un haut lieu d’activité volcanique, ce qui n’avait pas été imaginé jusqu’à présent.

Comme à l’accoutumée, ces observations sont post-éruptives. Personne n’avait anticipé le réveil du volcan sous-marin à l’est de Mayotte. Les dernières découvertes permettront-elles de prévoir la prochaine éruption de ce volcan ? A voir !

Source : Futura Sciences.

——————————————–

One day in 2018, a visitor to my blog contacted me to ask me what was happening in Mayotte. His daughter, a doctor at the hospital, was worried because the island was regularly shaken by earthquakes which caused anxiety among the patients who came to consult her. In fact, the island of Mayotte was experiencing an unprecedented seismic crisis which raised many questions in the scientific world. No one really knew what caused the tremors. It was only several months later that the research vessel Marion Dufresne finally arrived in the area. The scientists on board realized that the source of the seismicity was at the bottom of the ocean, about fifty kilometers east of Mayotte. A huge underwater volcano had just appeared on the ocean floor, with profuse lava emissions. The draining of the magma chamber was also causing a subsidence of the caldera, so that the island of Mayotte was tilting eastward, accentuating the anxiety within the population.
In 2018, at the time of these events, it was thought that the Comoros archipelago, of which Mayotte is a part, was of volcanic origin, potentially linked to a hot spot. However, this hypothesis has been contradicted by recent studies of the region. They have made it possible to acquire new data to better characterize the nature of the oceanic crust in this area. The measurements established that the volcanism of the Comoros was certainly not linked to hot spot activity. They highlighted the complexity of the earth’s crust in the area, and in particular the presence of a very old oceanic crust, around 170 million years old.
The latest data reveal the presence of a huge volcanic corridor extending all along the Comoros archipelago, as far as Madagascar. More than 2,200 submarine volcanoes have been identified over an area 200 kilometers wide and 600 kilometers long. These volcanoes appear to line up at the junction between the Somalia and Lwandle tectonic plates. In addition to the new volcano, the site of the last eruption, scientists believe there have been several recent volcanic episodes along this corridor. As a result, the Comoros archipelago is probably a focus of volcanic activity, which had not been imagined until now.
As usual, these observations are post-eruptive. No one had anticipated the awakening of the underwater volcano east of Mayotte. Will the latest discoveries help predict the next eruption of this volcano? Not so sure !
Source: Futura Sciences.

Carte montrant les volcans sous-marins le long de la limite entre les plaques Somalie et Lwandle, Geoscience Proceedings.

Nouvelles hypothèses sur la surface de Vénus // New hypotheses on the surface of Venus

Dans une note rédigée le 29 novembre 2022, j’expliquais que, selon une étude publiée dans le Planetary Science Journal au début de l’année 2022, le volcanisme à grande échelle qui a recouvert de lave 80% de la surface de Vénus a probablement été le facteur décisif qui a fait passer la planète d’un monde humide et doux à une atmosphère sulfurique irrespirable. La température de surface sur Vénus est d’environ 464 degrés Celsius, et il y a une pression de 90 atmosphères sous les nuages de dioxyde de carbone où se mêle l’acide sulfurique.

Une autre étude, également publiée en novembre 2022, confirme qu’il y a encore beaucoup de choses que nous ne savons pas sur Vénus. Les températures élevées et la pression atmosphérique empêchent les sondes de s’approcher de la planète. De plus, l’épaisseur de atmosphère ne permet guère de l’observer depuis l’orbite. Afin de pallier ces difficultés, des chercheurs ont récemment analysé les données fournies par la mission Magellan de la NASA il y a plusieurs décennies afin d’obtenir plus d’informations sur les étranges processus géologiques qui font se renouveler la surface de la planète.
Les chercheurs se sont toujours demandé comment Vénus libère sa chaleur, car, contrairement à la Terre, la planète n’a pas de plaques tectoniques. En examinant les données de la mission Magellan, les scientifiques ont découvert que la lithosphère – la couche externe de la surface de Vénus – était probablement beaucoup plus mince qu’on ne le pensait auparavant et pourrait ainsi laisser échapper la chaleur émise par le noyau interne de la planète. Ce sont ces zones de moindre épaisseur de la lithosphère vénusienne qui permettraient à des quantités importantes de chaleur de s’échapper, de la même façon que dans les zones où de nouvelles plaques tectoniques se forment sur le plancher océanique sur Terre.
Les chercheurs ont examiné des images de formations géologiques rondes ou coronae détectées par la mission Magellan à la surface de la planète. En exogéologie, une corona est une formation circulaire à ovoïde, marquée extérieurement par de nombreuses failles. En examinant la hauteur de ces failles, les scientifiques ont pu avoir une idée de l’épaisseur de la lithosphère dans ces régions. Ils ont découvert qu’elle était de seulement 11 kilomètres.
Ces observations pourraient permettre d’expliquer pourquoi la surface de Vénus semble si jeune. En effet, elle ne présente pas les nombreux anciens cratères d’impact que l’on observe en général sur une planète de son âge. Il y a eu beaucoup d’activité volcanique sur Vénus dans le passé et il se pourrait que cette activité continue aujourd’hui. Une théorie est que toutes les quelques centaines de millions d’années, toute la surface de la planète fond et se reforme lors d’énormes événements de « resurfaçage » qui expliqueraient pourquoi Vénus semble être jeune. La minceur de la lithosphère permettrait à la chaleur de circuler et d’atteindre la surface de la planète.
De telles recherches sur une planète où les humains ne mettront jamais les pieds pourraient sembler inutiles. Malgré tout, Vénus ouvre une fenêtre sur le passé et pourrait nous permettre de mieux comprendre à quoi ressemblait la Terre il y a plus de 2,5 milliards d’années, avant qu’apparaissent les plaques tectoniques.
Sources : Planetary Science Journal, Nature Geoscience.

——————————————-

In a post published on November 29th, 2022, I explained that, according to a study published in the Planetary Science Journal early in 2022, the massive global volcanism that covered 80% of Venus’ surface in lava may have been the deciding factor that transformed Venus from a wet and mild world into the suffocating, sulfuric planet that it is today. The surface temperature on Venus is about 464 degrees Celsius, and there is a pressure of 90 atmospheres underneath the dense clouds of carbon dioxide laced with sulfuric acid.

Another study, also released in November 2022 confirms that there is a lot we still don’t know about Venus. Its high temperatures and atmospheric pressure make it difficult to send probes onto the planet. Moreover, its thick atmosphere makes it difficult to observe from orbit. In order to compensate for these difficulties, researchers have recently dug through data from a decades-old NASA mission to learn about the strange geological processes which renew the planet’s surface.

One of the open questions about Venus is how it loses its heat, as, unlike Earth, Venus does not have tectonic plates. By looking at data from the Magellan mission, researchers discovered that the lithosphere – the outer layer of Venus’ surface – may be considerably thinner than previously thought and could let heat escape from the planet’s hot core. These regions of thin lithosphere appear to be allowing significant amounts of heat to escape, similar to areas where new tectonic plates form on Earth’s seafloor.

The researchers looked at images of round features – coronae – which Magellan saw on the planet’s surface, and by looking at the depths of ridges around them they could estimate the thickness of the lithosphere in these regions. They found that the lithosphere around these features was as thin as 11 kilometers deep.

This could help to explain why the surface of Venus looks so young. Indeed, it lacks the many old impact craters one expects to see on a planet of its age. There was a lot of volcanic activity in Venus’s past and there could still be volcanic activity today. One theory is that every few hundred million years the entire surface of the planet is melted and reformed in huge events called ‘resurfacings’ that would explain why Venus appears to be young. The thinness of the lithosphere allowing heat to flow through it supports that idea.

Such research about a planet where humans will never set foot on might look pointless. What is interesting is that Venus provides a window into the past to help us better understand how Earth may have looked over 2.5 billion years ago. It is in a state that might have occurred before a planet forms tectonic plates.

Sources : Planetary Science Journal, Nature Geoscience.

Image composite de Vénus réalisée à partir des données fournies par les sondes Magellan et Pioneer Venus Orbiter (Source: NASA)

Reconstitution en trois dimensions du Maat Mons, l’un des principaux volcans sur Vénus avec ses quelque 8 km de hauteur (Source: NASA)

Nouvelle lumière sur la collision tectonique au Tibet // New light on tectonic collision in Tibet

De nouvelles données sismiques recueillies par des scientifiques de l’Université de Stanford et de l’Académie Chinoise des Sciences Géologiques montrent que deux processus entrent en action simultanément sous la zone de collision tibétaine. C’est la première fois que des scientifiques disposent d’images fiables des variations longitudinales dans la zone de collision de l’Himalaya. L’étude a été publiée dans les Proceedings of the National Academy of Sciences en septembre 2020.

En plus d’être un lieu idéal pour les aventuriers et les personnes à la recherche d’une retraite spirituelle, la région de l’Himalaya est un endroit extraordinaire pour comprendre les processus géologiques. Elle abrite des gisements de cuivre, de plomb, de zinc, d’or et d’argent, ainsi que des éléments plus rares comme le lithium, l’antimoine et le chrome. Le soulèvement du plateau tibétain affecte même le climat car il influence la circulation atmosphérique et le développement des moussons.
Cependant, les scientifiques ne maîtrisent pas totalement les processus géologiques qui contribuent à la formation de la région. L’étude de l’Himalaya est rendue difficile par les problèmes d’accès physique et politique au Tibet. En conséquence, la plupart des missions sur le terrain ont été trop limitées dans l’espace pour comprendre la situation dans son ensemble, ou bien elles n’ont pas eu suffisamment de résolution en profondeur pour bien comprendre les processus en jeu.
Aujourd’hui, les nouvelles données sismiques collectées par des géophysiciens de la School of Earth, Energy & Environmental Sciences de Stanford offrent la première vue ouest-est du sous-sol de la région où s’affrontent l’Inde et l’Asie. L’étude participe au débat en cours sur la structure de la zone de collision himalayenne, source de catastrophes comme le séisme de Gorkha en 2015 qui a tué environ 9 000 personnes et en a blessé des milliers d’autres.
Les nouvelles données sismiques montrent que deux processus concurrents entrent probablement en action simultanément sous la zone de collision: 1) le mouvement d’une plaque tectonique sous une autre, ainsi que 2) l’amincissement et l’effondrement de la croûte.
C’est la première fois que des scientifiques recueillent des images vraiment fiables de la variation longitudinale de la zone de collision de l’Himalaya. Lorsque la plaque indienne entre en collision avec l’Asie, elle forme le Tibet, le plus haut et le plus vaste plateau de haute montagne de la planète. Ce processus a commencé très récemment dans l’histoire géologique, il y a environ 57 millions d’années. Les chercheurs ont proposé diverses explications pour sa formation, comme un épaississement de la croûte terrestre qui serait causé par la plaque indienne en se frayant un chemin sous le plateau tibétain.
Pour vérifier ces hypothèses, les chercheurs ont installé de nouveaux sismomètres en 2011 afin de rechercher des détails qui auraient pu passer inaperçus auparavant. Surtout, les nouveaux sismos ont été installés d’est en ouest à travers le Tibet. Auparavant, ils n’avaient été déployés que du nord au sud parce que c’est dans cette direction que les vallées du pays sont orientées et c’est aussi la direction dans laquelle les routes ont été historiquement construites.
Au final, les images reconstituées à partir d’enregistrements par 159 nouveaux sismomètres étroitement espacés le long de deux profils d’un millier de kilomètres de long, révèlent les endroits où la croûte indienne présente des déchirures profondes provoquées par la courbure de l’arc himalayen.
Tandis que la plaque tectonique indienne se déplace à partir du sud, le manteau, qui constitue la partie la plus épaisse et la plus solide de la plaque, plonge sous le plateau tibétain. Les dernières analyses révèlent que ce processus provoque la rupture de petites parties de la plaque indienne sous deux des rifts de surface, ce qui crée probablement des déchirures dans la plaque, de la même manière qu’un camion traversant un espace étroit entre deux arbres arrache des morceaux d’écorce. L’emplacement de ces déchirures semble essentiel pour comprendre jusqu’à quelle distance un séisme majeur comme celui Gorkha va se propager.
La survenue de séismes très profonds, à plus de 60 kilomètres sous la surface, est un aspect surprenant du Tibet. En utilisant leurs données sismiques, les chercheurs ont détecté des relations entre les déchirures de la plaque et la survenue de ces séismes profonds.
La dernière étude explique également pourquoi la force de la gravité varie dans différentes parties de la zone de collision. Les co-auteurs ont émis l’hypothèse qu’après que les petits morceaux se soient détachés de la plaque indienne, un matériau plus tendre car plus chaud est remonté des profondeurs, créant des déséquilibres de masse dans la zone de collision Inde-Tibet.
Source: Université de Stanford.
Référence: « Localized foundering of Indian lower crust in the India–Tibet collision zone » – Shi, D. et al. – Proceedings of the National Academy of Sciences – https://doi.org/10.1073/pnas.2000015117

————————————————

New seismic data collected by scientists at Stanford University and the Chinese Academy of Geological Sciences suggests that two competing processes are simultaneously operating beneath a collision zone in Tibet. The research marks the first time scientists have gathered credible images of along-strike or longitudinal variation in the Himalaya collision zone. Itwas published in the Proceedings of the National Academy of Sciences in September 2020..

In addition to being the place to be for adventurers and spiritual seekers, the Himalaya region is a wonderful place for understanding geological processes. It hosts mineral deposits of copper, lead, zinc, gold and silver, as well as rarer elements like lithium, antimony and chrome. The uplift of the Tibetan plateau even affects global climate by influencing atmospheric circulation and the development of seasonal monsoons.

However, scientists still don’t fully understand the geological processes contributing to the region’s formation. The study of the Himalayas is made difficult by the physical and political inaccessibility of Tibet. As a consequence, most field experiments have either been too localized to understand the big picture or they have lacked sufficient resolution at depths to properly understand the processes.

Now, new seismic data gathered by geophysicists at Stanford’s School of Earth, Energy & Environmental Sciences provides the first west-to-east view of the subsurface where India and Asia collide. The research contributes to an ongoing debate over the structure of the Himalaya collision zone, the source of catastrophes like the 2015 Gorkha earthquake that killed about 9,000 people and injured thousands more.

The new seismic images suggest that two competing processes are simultaneously operating beneath the collision zone: 1) movement of one tectonic plate under another, as well as 2) thinning and collapse of the crust.

The study marks the first time that scientists have collected truly credible images of an along-strike, or longitudinal, variation in the Himalaya collision zone. As the Indian plate collides with Asia it forms Tibet, the highest and largest mountain plateau on the planet. This process started very recently in geological history, about 57 million years ago. Researchers have proposed various explanations for its formation, such as a thickening of the Earth’s crust caused by the Indian plate forcing its way beneath the Tibetan Plateau.

To test these hypotheses, researchers installed new seismic recorders in 2011 in order to resolve details that might have been previously overlooked. Importantly, the new recorders were installed from east to west across Tibet; traditionally, they had only been deployed from north to south because that is the direction the country’s valleys are oriented and thus the direction that roads have historically been built.

The final images, pieced together from recordings by 159 new seismometers closely spaced along two 1,000-kilometre long profiles, reveal where the Indian crust has deep tears associated with the curvature of the Himalayan arc.

As the Indian tectonic plate moves from the south, the mantle, the thickest and strongest part of the plate, is dipping beneath the Tibetan plateau. The new analyses reveal that this process is causing small parts of the Indian plate to break off beneath two of the surface rifts, likely creating tears in the plate, similar to how a truck barreling through a narrow gap between two trees might chip off pieces of tree trunk. The location of such tears can be critical for understanding how far a major earthquake like Gorkha will spread.

The occurrence of very deep earthquakes, more than 60 kilometres below the surface, is an unusual aspect of Tibet. Using their seismic data, the researchers found associations between the plate tears and the occurrence of those deep quakes.

The research also explains why the strength of gravity varies in different parts of the collision zone. The co-authors hypothesized that after the small pieces dropped off from the Indian plate, softer material from underneath bubbled up, creating mass imbalances in the India-Tibet collision zone.

Source: Stanford University.

Reference: « Localized foundering of Indian lower crust in the India–Tibet collision zone » – Shi, D. et al. – Proceedings of the National Academy of Sciences – https://doi.org/10.1073/pnas.2000015117

Environnement tectonique du Népal avec le séisme de Gorkha (Source : IPG, USGS)

Odeurs et séismes // Odours and earthquakes

Le 21 août 2020, les pompiers de la préfecture japonaise de Kanagawa ont reçu de nombreux appels signalant une odeur inhabituelle qui avait envahi la ville pendant une heure. Les sismologues pensent que ce phénomène étrange pourrait être le signe précurseur d’un puissant séisme. Ils expliquent que les roches produisent une odeur particulière avant de se rompre sous les contraintes auxquelles elles sont soumises.
L’odeur désagréable avait déjà été signalée à deux reprises à Kanagawa au cours des mois précédents. La police a reçu environ 260 appels le 4 juin 2020 faisant état d’une « odeur de gaz. » Une équipe a été dépêchée sur place la suite de ces appels, mais aucune conduite de gaz endommagée n’a été découverte et la cause de la puanteur est restée inconnue.
Un sismologue de l’Université de Ritsumeikan, qui étudie la relation entre les séismes et les odeurs, a adressé une mise en garde juste après le premier incident. Les études montrent que les roches produisent une certaine odeur juste avant de se rompre sous les contraintes auxquelles elles sont soumises. Il a ajouté que les séismes majeurs ne se produisent pas brusquement ; les tensions s’accumulent lentement au fil des mois ; les plaques tectoniques se déplacent progressivement l’une contre l’autre avant que se déclenche le séisme principal. C’est ce processus qui est probablement la cause des mauvaises odeurs dans la région de Yokosuka.
Dans le passé, plusieurs séismes majeurs ont déjà été précédés par des odeurs désagréables. Par exemple, avant le tremblement de terre de Christchurch (Nouvelle-Zélande) en 2010 et celui de Kobe (Japon) en 1995, des témoins avaient fait état d’odeurs mystérieuses. Le séisme de magnitude M7.1 à Christchurch a causé des dégâts considérables et est aujourd’hui considéré comme celui qui a causé le plus de dégâts à une grande zone urbaine depuis l’événement de Hawke’s Bay en 1931.
Le séisme de Kobe a été l’un des pires de l’histoire du Japon. D’une magnitude de M7.3, il a tué environ 6 500 personnes et causé plus de 100 milliards de dollars de dégâts. Selon une étude, une odeur de soufre a été signalée avant la catastrophe.
L’avenir nous dira si les mises en garde des sismologues japonais sont justifiées et si un séisme majeur secouera la région de Kanagawa.
Source: The Watchers,

———————————————–

On August 21st, 2020, the fire department in the Japanese Kanagawa Prefecture received numerous calls from residents reporting an unusual smell in the area over the course of an hour. Seismologists suggest that the strange phenomenon may be a precursor of a large earthquake. They explain rocks generate a distinct smell before breaking under stress.

 The unpleasant smell was reported twice in the prefecture during the previous months. About 260 calls were made to police hotlines on June 4th, all noting that the odour « smelled like gas ». An extensive investigation was conducted following the reports but no damaged gas lines were discovered, and the cause remained unknown.

A seismologist at Ritsumeikan University, who studies the relationship between earthquakes and odours, issued a warning right after the first incident. He explained that based on research, rocks create a certain smell just before they break under stress. He added that large earthquakes do not happen abruptly; they slowly build up over months, with the grinding tectonic plates gradually peeling away at each other before the main quake occurs. This process may be generating the stench in the Yokosuka area.

In the past, several major earthquakes were predeced by similar unpleasant odours. For instance, before the 2010 Christchurch Earthquake in New Zealand and the 1995 Kobe Earthquake in Japan, there had been reports of mysterious odours from witnesses. The M7.1 Christchurch quake left a considerable amount of damage and was considered the largest earthquake to impact a major urban area since the 1931 Hawke’s Bay earthquake.

The Kobe earthquake was one of the worst in Japan’s history. The M7.3 event resulted in around 6 500 fatalities and more than 100 billion dollars’ worth of damage. According to a study, a sulfur-like smell was reported prior to the disasters.

Let’s see if the seismologists warnings are justified and idf a major earthquake will shake the Kanagawa area.

Source: The Watchers.

Dégâts occasionnés par le séisme de Kobe (Crédit photo: Wikipedia)