Super éruptions et refroidissement de l’atmosphère // Super eruptions and atmosphere cooling

Une nouvelle étude publiée dans le Journal of Climate explique qu’en entravant la lumière du soleil, les particules émises lors d’ une super éruption ne refroidissent probablement pas la température à la surface de la Terre aussi fortement qu’on l’avait estimé précédemment. La super éruption du volcan Toba (Indonésie) il y a environ 74 000 ans a déployé une énergie 1 000 fois plus puissante que l’éruption du mont St. Helens en 1980.

Image satellite du Lac Toba (Source: NASA)

S’agissant des éruptions les plus puissantes, les chercheurs se demandent depuis longtemps quel niveau de refroidissement causé par ces éruptions, et souvent appelé hiver volcanique, pourrait potentiellement constituer une menace pour l’humanité. Les études déjà effectuées s’accordent pour dire que notre planète subirait un refroidissement, mais elles divergent sur son ampleur. Les estimations varient entre 2 et 8 degrés Celsius.
La nouvelle étude, réalisée par une équipe du Goddard Institute for Space Studies de la NASA et de l’Université Columbia à New York, a utilisé une modélisation informatique de haute technologie pour simuler des super-éruptions comme celle du Toba. Les chercheurs ont alors constaté que le refroidissement post-éruption ne dépasse probablement pas 1,5 degré Celsius, même pour les événements les plus puissants.
Pour mériter le titre de « super éruption », un tel événement doit libérer plus de 1 000 kilomètres cubes de magma, avec un VEI 8, le maximum sur cette échelle. Ces éruptions sont extrêmement puissantes ; heureusement, elles sont rares. La super-éruption la plus récente s’est produite il y a plus de 22 000 ans au niveau du Lac Taupo en Nouvelle-Zélande.

Le Lac Taupo vu depuis l’espace (Source: NASA)

L’événement le plus connu est la super éruption qui a eu pour cadre le cratère de Yellowstone il y a environ 2 millions d’années.

Photo: C. Grandpey

Les auteurs de l’étude ont tenté de comprendre quelle était la cause de la divergence dans les estimations de température fournies par les modélisations. Il faut savoir que « les modélisations sont le principal outil permettant de comprendre les changements climatiques survenus il y a trop longtemps pour laisser des traces de leur impact ». Les scientifiques ont étudié plus particulièrement une variable qui peut être difficile à cerner : la taille des particules microscopiques de soufre injectées à des kilomètres de hauteur dans l’atmosphère.
Dans la stratosphère (entre 10 et 50 kilomètres d’altitude environ), le dioxyde de soufre gazeux émis par des volcans subit des réactions chimiques pour se condenser en particules de sulfate liquide. Ces particules peuvent influencer la température de surface sur Terre de deux manières : en réfléchissant la lumière solaire entrante (ce qui provoque un refroidissement), ou en piégeant l’énergie thermique sortante (ce qui génère une sorte d’effet de serre).
Au fil des années, ce phénomène de refroidissement a également suscité des questions sur la manière dont les humains pourraient inverser le réchauffement climatique, un concept baptisé géo-ingénierie. Il consiste à injecter volontairement des particules d’aérosol dans la stratosphère pour favoriser un effet de refroidissement.
Les chercheurs ont montré dans quelle mesure le diamètre des particules d’aérosol volcanique influençait les températures post-éruption. Plus les particules sont petites et denses, plus leur capacité à bloquer la lumière du soleil est grande. Mais estimer la taille des particules est extrêmement difficile car les super éruptions du passé n’ont pas laissé de traces physiques fiables. Dans l’atmosphère, la taille des particules change à mesure qu’elles coagulent et se condensent. Lorsque les particules retombent sur Terre et sont conservées dans des carottes de glace, elles ne laissent pas de traces physiques claires en raison du mélange et du compactage.
En simulant des super-éruptions sur une gamme de tailles de particules, les chercheurs ont découvert que les super-éruptions sont probablement incapables de modifier la température globale davantage que les plus grandes éruptions des temps modernes. Par exemple, l’éruption du mont Pinatubo aux Philippines en 1991 n’a provoqué qu’une baisse d’environ un demi-degré Celsius de la température sur Terre pendant deux ans.

Eruption du Pinatubo en 1991 et nuage d’aérosols (Source: Wikipedia)

La compréhension du refroidissement causé par les super-éruptions nécessite davantage de recherches. Selon les chercheurs de la NASA, la voie à suivre consiste à comparer des modèles de manière exhaustive, ainsi qu’à effectuer davantage d’études en laboratoire, en insistant sur les facteurs déterminant la taille des particules d’aérosols volcaniques. Compte tenu des incertitudes dans ce domaine, le recours à la géo-ingénierie via l’injection d’aérosols dans la stratosphère ne semble pas la meilleure solution.
Source : NASA.

————————————————–

A new study published in the Journal of Climate. suggests that sunlight-blocking particles from a super eruption would not cool surface temperatures on Earth as severely as previously estimated.

Some 74,000 years ago, the Toba volcano in Indonesia exploded with a force 1,000 times more powerful than the 1980 eruption of Mount St. Helens.

When it comes to the most powerful volcanoes, researchers have long speculated how post-eruption global cooling – sometimes called volcanic winter – could potentially pose a threat to humanity. Previous studies agreed that some planet-wide cooling would occur but diverged on how much. Estimates have ranged from 2 to 8 degrees Celsius.

The new study, by a team from NASA’s Goddard Institute for Space Studies and Columbia University in New York used advanced computer modeling to simulate super-eruptions like the Toba event. They found that post-eruption cooling would probably not exceed 1.5 degrees Celsius for even the most powerful blasts.

To qualify as a super eruption, a volcano must release more than 1,000 cubic kilometers of magma, with a VEI 8, the maximum on the scale. These eruptions are extremely powerful and rare, fortunately. The most recent super-eruption occurred more than 22,000 years ago in New Zealand’s Lake Taupo. The best-known example may be the eruption that blasted Yellowstone Crater about 2 million years ago.

The authors of the study tried to understand what was driving the divergence in model temperature estimates because “models are the main tool for understanding climate shifts that happened too long ago to leave clear records of their severity.” They settled on a variable that can be difficult to pin down: the size of microscopic sulfur particles injected kilometers high into the atmosphere.

In the stratosphere (about 10 to 50 kilometers in altitude), sulfur dioxide gas from volcanoes undergoes chemical reactions to condense into liquid sulfate particles. These particles can influence surface temperature on Earth in two ways: by reflecting incoming sunlight (causing cooling) or by trapping outgoing heat energy (a kind of greenhouse warming effect).

Over the years, this cooling phenomenon has also spurred questions about how humans might turn back global warming – a concept called geoengineering – by intentionally injecting aerosol particles into the stratosphere to promote a cooling effect.

The researchers showed to what extent the diameter of the volcanic aerosol particles influenced post-eruption temperatures. The smaller and denser the particles, the greater their ability to block sunlight. But estimating the size of particles is challenging because previous super eruptions have not left reliable physical evidence. In the atmosphere, the size of the particles changes as they coagulate and condense. Even when particles fall back to Earth and are preserved in ice cores, they don’t leave a clear-cut physical record because of mixing and compaction.

By simulating super-eruptions over a range of particle sizes, the researchers found that super-eruptions may be incapable of altering global temperatures dramatically more than the largest eruptions of modern times. For instance, the 1991 eruption of Mount Pinatubo in the Philippines caused about a half-degree drop in global temperatures for two years.

The mysteries of super-eruption cooling invite more research. The NASA researchers say that he way forward is to conduct a comprehensive comparison of models, as well as more laboratory and model studies on the factors determining volcanic aerosol particle sizes. Given the ongoing uncertainties, geoengineering via stratospheric aerosol injection is a long way from being a viable option.

Source : NASA.

Les super éruptions de Yellowstone : des événements explosifs multiples ? // Were Yellowstone super eruptions multiple explosive events ?

Yellowstone est un super volcan dont la dernière éruption s’est produite il y a 631 000 ans. Certains scientifiques pensent que le volcan est en retard dans son cycle éruptif, bien que la notion de cycle n’ait jamais été clairement prouvée en volcanologie.
Selon le rapport de l’Observatoire Volcanologique de Yellowstone pour l’année 2022, publié en mai 2023, la dernière super éruption n’a pas été un événement unique. En effet, de nouvelles études laissent supposer qu’il s’agissait d’une série d’éruptions ou d’événements multiples qui ont émis des matériaux volcaniques en succession rapide. Les travaux effectués sur le terrain à Yellowstone en 2022 ont fourni de nouvelles preuves géologiques que « la formation de la Caldeira de Yellowstone est beaucoup plus complexe qu’on ne le pensait auparavant ».
Il convient de rappeler que Yellowstone est l’un des plus grands systèmes volcaniques au monde. Il se trouve au-dessus de l’un des « points chauds » de la planète. Ce système a produit trois éruptions qui ont formé une caldeira au cours des 3 derniers millions d’années : l’éruption de Huckleberry Ridge Tuff, il y a 2,1 millions d’années ; l’éruption de Mesa Falls, il y a 1,3 million d’années ; et l’éruption de Lava Creek, il y a 631 000 ans.
Les événements de Huckleberry Ridge Tuff et de Lava Creek sont considérés comme des super-éruptions car ils ont expulsé plus de 1 000 kilomètres cubes de matériaux. Ce dernier événement a entraîné la formation de la caldeira actuelle de Yellowstone. Mesa Falls a émis environ 280 kilomètres cubes de matériaux, ce qui est insuffisant pour dire qu’il s’agit d’une super-éruption.
Des recherches antérieures ont montré que la super-éruption de Lava Creek ne s’est pas produite en une seule fois ; les dépôts dans le secteur de Sour Creek Dome à l’est du parc national révèlent que l’explosion principale a été précédée d’au moins une autre éruption. L’ignimbrite trouvée sur le site s’était complètement refroidie avant que débute l’éruption principale de Lava Creek.
Le scientifique responsable de l’Observatoire Volcanologique de Yellowstone explique qu' »on a toujours su qu’il y avait au moins deux unités géologiques issues de l’éruption, et on pensait qu’il y avait peu ou pas d’écart de temps entre elles. Aujourd’hui, nous pensons il y a plusieurs unités, mais nous ne savons pas quel laps de temps les a séparées, ni même s’il y a eu un laps de temps. »
Jusqu’à présent, les chercheurs avaient trouvé quatre unités d’ignimbrite à Sour Creek, ce qui laisse supposer au moins quatre épisodes éruptifs. Ils ont également découvert deux structures qui semblent être des bouches éruptives susceptibles d’avoir été à l’origine de ces roches. Cela pourrait signifier que plusieurs bouches étaient actives ou qu’il y a eu un laps de temps entre les éruptions.
En 2020, les scientifiques ont découvert que l’éruption de Huckleberry Ridge Tuff était également un événement multiple. L’analyse des roches sur le site montre qu’il y a eu trois éruptions distinctes, avec des semaines ou des mois entre les deux premières, et des années ou des décennies entre la deuxième et la troisième.
Rien ne montre à l’heure actuelle que le volcan de Yellowstone va entrer en éruption. Cependant, la découverte que l’éruption de Lava Creek a pu suivre un schéma similaire à celui de l’éruption de Huckleberry Ridge Tuff pourrait donner une idée de ce qui se passera quand Yellowstone entrera  à nouveau en éruption.

Source : Live Science, Observatoire Volcanologique de Yellowstone.

——————————————-

Yellowstone is a super volcano whose last eruption occurred 631,000 years ago. Some scientists think the volcano is overdue in its eruptive cycle, although the notion of cycle has never been clearly proved in volcanic activity.

According to the Yellowstone Volcano Observatory 2022 Annual Report, published in May 2023, the latest super eruption was not a single event. Instead, new research suggests it was a series of eruptions or multiple vents spewing volcanic material in rapid succession. Fieldwork performed at Yellowstone in 2022 has provided new geological evidence that « the formation of Yellowstone Caldera was much more complex than previously thought. »

It is worth remembering that Yellowstone is one of the world’s biggest volcanic systems. It sits above one of Earth’s « hotspots. » It has produced three caldera-forming eruptions in the past 3 million years: the Huckleberry Ridge Tuff eruption, 2.1 million years ago; the Mesa Falls eruption, 1.3 million years ago; and the Lava Creek eruption, 631,000 years ago.

The Huckleberry Ridge Tuff and Lava Creek events are considered super-eruptions because they expelled more than 1,000 cubic kilometers of material. The latter was responsible for the formation of the Yellowstone caldera. Mesa Falls erupted an estimated 280 cubic kilometers of material, so it is not considered a super-eruption.

Previous research has shown that the Lava Creek super-eruption did not occur all of a sudden ; deposits at the Sour Creek Dome region east of the national park suggest that the giant blast was preceded by at least one eruption. Ignimbrite found at the site had completely cooled before the main Lava Creek eruption took place.

The scientist-in-charge at the Yellowstone Volcano Observatory explains that « it had always been known that there were at least two geological units from the eruption, and it was thought that there was little to no time gap between them. Now, we think there are more units and we are not sure what the time gap might have been, if any. »

So far, the researchers have found four previously unrecognized ignimbrite units at Sour Creek, suggesting at least four eruptive pulses. They also found two structures that appear to be eruptive vents, which may have been the sources of these rocks. That could mean either several vents were active, or there was time separation between the eruptions.

In 2020, scientists found that the Huckleberry Ridge Tuff eruption was also a phased event. Analysis of rocks at the site suggests there were three separate eruptions, with weeks to months between the first two, and years to decades between the second and third.

Yellowstone volcano is not expected to erupt anytime soon. However, the finding that the Lava Creek eruption may have followed a similar pattern to that of the Huckleberry Ridge Tuff eruption could give an idea of what to expect if and when Yellowstone erupts for good.

Source : Live Science, Yellowstone Volcano Observatory.

Photos: C. Grandpey

Quand la presse s’amuse à nous faire peur….

Après la COVID-19 et le réchauffement climatique, voici l’éruption susceptible de nous anéantir! On peut lire sur le site Futura Sciences un article dont le titre a de quoi donner des frissons: « Il y a une chance sur six pour qu’une éruption majeure se produise d’ici 100 ans, et nous sommes loin d’être prêts ! »

C’est vrai que la Terre n’est pas à l’abri d’une éruption de grande ampleur qui affecterait notre planète tout entière, mais affirmer qu’il existe une chance sur six qu’une telle catastrophe se produise est aller un peu vite en besogne. A l’heure où nous ne sommes pas fichus de prévoir une éruption à court – voire très court – terme, il est bien évident que nous sommes totalement incapables de faire une telle affirmation.

Il est toutefois indéniable que le risque existe. Il suffit de se pencher sur le passé de la Terre pour s’en rendre compte. Certaines éruptions ont atteint l’indice d’explosivité (VEI) 8, le maximum. Parmi les plus violentes figurent celles du Yellowstone il y a 640.000 ans, ou celle du Taupo il y a 26.500 ans, sans oublier celle du Toba (Indonésie) il y a quelque 74 000 ans. Plus près de nous, l’éruption du Tambora (Indonésie) en 1815 aurait causé la mort de 100.000 personnes et aurait influencé le climat terrestre de manière globale, impactant l’agriculture et causant une série de famines. Elle a été dotée d’un VEI 7.

La dernière éruption du Hunga Tonga-Hunga Ha’apai début 2022, celles du mont St Helens en 1980, ou encore celle du Pinatubo en 1991 – aussi puissantes soient elles – ne supportent pas la comparaison avec les super éruptions que je viens de mentionner. Pourtant, la récente éruption du Hunga Tonga a été catégorisée parmi les plus puissantes de la période moderne. Son indice d’explosivité volcanique (VEI) est évalué entre 5 et 6, sur l’échelle de 8 niveaux.

Sommes-nous prêts à endurer de telles catastrophes? La question est intéressante. Nous avons plus ou moins réussi à faire face à la pandémie de COVID-19. Nous devons aussi faire face au réchauffement climatique qui est en train de devenir une réelle menace, peut-être encore plus forte qu’une éruption volcanique majeure. Des chercheurs mettent en garde sur notre grande vulnérabilité face à ce type d’événements. Des scientifiques de l’Université de Cambridge estiment que, si une éruption de VEI 7 ou 8 avait lieu aujourd’hui, les répercussions sur l’humanité seraient réellement catastrophiques car nos systèmes économiques et nos modes de vie ont considérablement évolué. C’est un fait que nous n’avons que peu d’idée du risque que représente une éruption d’une telle puissance.

Il est utile de rappeler que le risque induit par une super éruption est bien réel et que la menace plane. On sait d’ores et déjà que la cendre d’une éruption du Yellowstone, portée par les vents dominants, anéantirait l’agriculture dans le Corn Belt, le grenier à céréales des Etats Unis, sans parler des conséquences pour l’Europe.

Certains chercheurs expliquent que les archives glaciaires permettent d’estimer la fréquence des éruptions volcaniques majeures. D’après eux, il y aurait ainsi une chance sur six qu’une explosion de magnitude 7 se produise dans les 100 prochaines années. Affirmer cela, c’est vraiment parler pour ne rien dire car nous n’en savons rien! Il n’est pas du tout évident que les super éruptions répondent à un cycle. Pour preuve, il se dit que le Yellowstone est en retard dans son rythme éruptif. De toute façon, il y a de fortes chances pour que ceux qui font de telles affirmations ne soient plus de ce monde quand la catastrophe se produira et on ne pourra donc pas les accuser de s’être trompés!

Dans la dernière partie de l’article de Futura Sciences, on peut lire que le risque d’une catastrophe volcanique majeure serait plusieurs centaines de fois plus important que le risque d’une collision avec un astéroïde de 1 km de diamètre et que nous serions mieux préparés à ce deuxième type de catastrophe. Pas si sûr! Là encore, il s’agit d’une affirmation gratuite car nous n’en savons rien.

Source: Futura Sciences.

Yellowstone, Taupo, Toba, Tambora : des super éruptions ont secoué la Terre (Photos: C. Grandpey, Wikipedia)

Les super volcans australiens // Australia’s super volcanoes

drapeau-francaisEn 2015, des scientifiques de l’Université Nationale d’Australie ont découvert la plus longue chaîne volcanique continentale au monde. Elle s’étire sur 2000 km dans la partie orientale du continent australien. Cette chaîne volcanique, baptisée Cosgrove Chain, qui a commencé à se former il y a 33 millions d’années, s’étire depuis les Iles Whitsunday dans le Queensland au NE jusqu’à proximité de Melbourne au SE (voir carte ci-dessous). Les volcans ne se sont pas édifiés au bord des plaques tectoniques, comme souvent sur notre planète; ils sont le fruit de panaches mantelliques (voir ma note du 17 septembre 2015). Les éruptions furent si violentes qu’elles expédièrent des matériaux jusque sur la côte ouest du pays, à 4000 km de distance. Cette activité volcanique a eu lieu au moment où la Nouvelle-Zélande commençait à se séparer de la bordure orientale de l’Australie.
Jusqu’à récemment, la seule preuve de la violence de ces éruptions était un alignement de cratères éteints et les coulées de lave solidifiées que les éruptions avaient laissées derrière elles. De nouvelles informations viennent d’être fournies par des chercheurs de l’Université Curtin. Ils étaient en train d’effectuer des forages dans la plaine de Nullarbor en Australie occidentale quand ils ont découvert des cristaux  de zircon de la taille de grains de sable qui ne correspondaient pas à la composition chimique des roches typiques de la région. En revanche, ces cristaux ressemblaient, par leur âge et leur composition, aux roches volcaniques de la région des îles Whitsunday. Les cristaux n’avaient pas pu traverser le pays par le biais de systèmes fluviaux pour deux raisons : ils étaient très bien conservés, et les fossiles incrustés dans les roches indiquaient que les cristaux présentaient un âge identique.
Les chercheurs pensent que les éruptions sur la Cosgrove Chain étaient probablement des dizaines ou des centaines de fois plus puissantes que celles observées dans les temps historiques. Une éruption de ce type aujourd’hui serait entendue jusqu’à Perth, sur la côte ouest de l’Australie. Il y a des dizaines de millions d’années, l’Australie n’a pas été le seul pays à avoir été secoué par de puissantes éruptions volcaniques en raison de la dislocation du Gondwana. Ces super éruptions sont tout à fait exceptionnelles de nos jours. Les volcans sont capables d’émettre des panaches de fines particules de cendre sur de grandes distances, mais ils ne peuvent pas envoyer des lapilli à des milliers de kilomètres. L’éruption du Toba (Indonésie) il y a 73 000 ans a expédié des particules de la taille de grains de sable sur un rayon de 2700 km.
Source: New Scientist.
https://www.newscientist.com/

——————————————

drapeau-anglaisIn 2015, scientists from the Australian National University discovered the world’s longest chain of continental volcanoes, stretching 2,000km along eastern Australia. The volcanic chain, named the Cosgrove Chain, which started its formation 33 million years ago, runs from near the Whitsundays in Queensland to near Melbourne (see map below). The volcanoes weren’t formed at the edge of tectonic plates. Instead, they came about from mantle plumes. (see my note of 17 September 2015). Their explosions were so violent that they could send material ­­all the way across to the west coast of the country, 4,000 km away. This volcanic activity occurred at the time when New Zealand was beginning to tear away from Australia’s eastern edge.

Until recently, the only evidence of the scale of these eruptions was the dormant craters and the solidified lava flows left behind. Researchers at Curtin University in Western Australia were drilling beneath the Nullarbor plain in remote Western Australia when they discovered sand-sized zircon crystals that did not match any of the region’s typical rock compositions. Instead, the crystals matched volcanic rock in the Whitsundays area on the country’s north-east coast in both age and geochemical composition. Two clues ruled out the possibility that river systems had carried the zircon crystals across the country: they were very well preserved, and fossils in the rocks indicated that the crystals were of an identical age.

The researchers think that the eruptions were probably tens to hundreds of times more powerful than any documented in human history. An equivalent eruption today would be heard in the west coast city of Perth. Australia was not the only country to have been shaken by powerful volcanic activity 100 millions of years ago due to the disintegration of the supercontinent Gondwana. Such mega eruptions are quite exceptional today. Modern volcanoes that can spew fine particles of ash over large distances, but they lack the power to hurl larger particles thousands of kilometres away. The biggest known super-eruption occurred of Toba volcano in Indonesia 73,000 years ago propelled sand-sized particles over a 2700-kilometre radius.

Source: New Scientist.

https://www.newscientist.com/

Cosgrove chain copie

Cosgrove Chain.

Whitsundays

Anciens cratères dans les Iles Whitsunday

(Source: Australian National University)