Nouvelle éruption du Sinabung (Indonésie) // New eruption of Sinabung Volcano (Indonesia)

Une éruption très violente s’est produite sur Sinabung le lundi 19 février 2018. Elle a commencé à 01h53 (TU), avec des coulées pyroclastiques qui ont parcouru 3,5 km et 4,9 km depuis le sommet. Le VAAC de Darwin indique que le panache de cendre a atteint une altitude de 16,7 km. La couleur de l’alerte aérienne est passée d’Orange à Rouge. Selon l’Observatoire Volcanologique du Sinabung, l’éruption a duré 4 minutes et 51 secondes.
D’importantes retombées de cendre ont été signalées autour du volcan, avec une visibilité de 5 à 10 mètres.
L’éruption n’a pas causé de victimes. Les coulées pyroclastiques sont restées bien à l’intérieur de la zone rouge qui a été évacuée en septembre 2017 lorsque le volcan a commencé à entrer en éruption. Cependant, entre février 2014 et mai 2016, les éruptions du Sinabung ont coûté la vie à 23 personnes. Malgré l’interdiction, je sais qu’il y a encore des touristes qui entrent dans la zone interdite. Si une crise éruptive majeure se produit pendant qu’ils sont là, ils sont sûrs d’être tués.

Sources : Différents médias d’information & The Watchers.

————————————-

A very violent eruption occurred at Sinabung volcano on Monday, February 19th, 2018. It started at 01:53 UTC and unleashed pyroclastic flows that traveled 3.5 km and 4.9 km from the summit. The Darwin VAAC indicates that the ash plume reached an altitude of 16.7 km. The aviation colour code was raised from Orange to Red. According to the Sinabung Volcano Observatory, the eruption lasted 4 minutes and 51 seconds.

Major ashfall was reported around the volcano and visibility was said to be only 5 to 10 metres.

The eruption did not cause casualties. The pyroclastic flows remained well inside the red zone that was evacuated in September 2017 when the volcano started erupting. However, between February 2014 and May 2016, eruptions at Mount Sinabung claimed lives of 23 people. Despite the interdiction, I know there are still tourists who enter the no-go zone. Should a major eruptive crisis occur while they are there, they are sure to be killed.

Sources : News media & The Watchers.

Dôme de lave au sommet du Sinabung (Photo: Franck Gueffier)

Nouvelle théorie sur Yellowstone // New theory about Yellowstone

Les scientifiques se sont toujours posé des questions sur le super volcan de Yellowstone. Ils ont essayé de comprendre son fonctionnement interne et les résultats de leurs études ont souvent été remis en question ou débattus. Un exemple des incertitudes concernant Yellowstone est donné par une étude récente menée par des chercheurs de l’Université de l’Illinois.
Les scientifiques ont utilisé des simulations informatiques pour étudier l’histoire de Yellowstone sur plus de 20 millions d’années, et leurs résultats contredisent la théorie la plus répandue sur l’activité volcanique dans la région. Ils ont constaté que l’activité volcanique à Yellowstone est beaucoup plus complexe et dynamique qu’on ne le pensait auparavant. Ils ont utilisé la tomographie sismique pour scruter les profondeurs du sous-sol de l’ouest des États-Unis et reconstituer l’histoire géologique qui se cache derrière le volcanisme.
À l’aide de puissants ordinateurs, l’équipe scientifique a imaginé différents scénarios tectoniques et leurs résultats ne valident pas l’hypothèse traditionnelle du panache mantellique qui s’élève verticalement vers la surface et provoquerait l’activité volcanique dans la région. Les observations des chercheurs révèlent que c’est plutôt une activité proche de la surface de la planète qui serait responsable du volcanisme, même si la cause exacte reste un mystère.
Selon l’étude, il semble que le panache mantellique sous l’ouest des États-Unis se soit enfoncé de plus en plus profondément dans la Terre au fil du temps. Cela laisse supposer qu’un obstacle proche de la surface – peut-être une plaque océanique en provenance de la limite tectonique occidentale – interfère avec l’ascension du panache. En conséquence, la source de chaleur dont dépend le volcanisme à l’intérieur des terres proviendrait en fait du manteau océanique peu profond à l’ouest de la côte nord-ouest du Pacifique.
La chaleur qui provoque le volcanisme naît habituellement dans les zones où les plaques tectoniques se rencontrent et où l’une d’elles glisse sous une autre dans un processus de subduction. Cependant, Yellowstone et d’autres zones volcaniques de l’ouest des États-Unis sont loin des limites de la zone de subduction le long de la côte ouest. S’agissant du volcanisme à l’intérieur des terres, on pensait qu’une source de chaleur profonde – un panache mantellique – faisait fondre la croûte et générait le volcanisme en surface. L’hypothèse du panache mantellique a été controversée pendant de nombreuses années et la dernière étude vient s’ajouter aux preuves d’un nouveau scénario tectonique.
Dans une étape suivante, l’équipe de chercheurs de l’Université de l’Illinois espère inclure dans les modélisations des données chimiques provenant des roches volcaniques. Cela permettra de mieux localiser la source exacte du magma car les roches des panaches mantelliques profonds et des plaques tectoniques proches de la surface ont des composantes chimiques différentes.
University of Illinois at Urbana-Champaign.

——————————————–

Scientists have always been asking questions about the super volcano of Yellowstone. They have tried to understand the inner workings of the volcano and the results of their studies have often been questioned or debated. An example of the uncertainties about Yellowstone is given by a recent study led by researchers at the University of Illinois.

The scientists used computer simulations to study the history of Yellowstone over 20 million years, with findings contradicting the traditional theory of volcanic activity in the region. They digitally played back a portion of the park’s geologic history, finding that volcanic activity at Yellowstone is far more complex and dynamic than was previously thought. They used seismic tomography to peer deep into the subsurface of the western US and piece together the geologic history behind the volcanism.

Using supercomputers, the team ran different tectonic scenarios to simulate a range of possible geologic histories for the region. The results gave little support for the traditional mantle plume hypothesis, which argues that heat from deep within the Earth rising vertically toward the surface is the cause of volcanic activity in the area. The team’s observations instead suggest activity much closer to the planet’s surface is responsible, although the exact cause remains a mystery.

According to the study, it appears that the mantle plume under the western US is sinking deeper into the Earth through time. This suggests that something closer to the surface – an oceanic slab originating from the western tectonic boundary – is interfering with the rise of the plume. A robust result from these models is that the heat source behind the extensive inland volcanism actually originated from the shallow oceanic mantle to the west of the Pacific Northwest coast.

The heat needed to drive volcanism usually occurs in areas where tectonic plates meet and one slab subducts under another. However, Yellowstone and other volcanic areas of the inland western US are far away from the active plate boundaries along the west coast. In these inland cases, a deep-seated heat source – a mantle plume – was suspected of driving crustal melting and surface volcanism. The mantle plume hypothesis has been controversial for many years and the new findings add to the evidence for a revised tectonic scenario.

Eventually, the team hopes to include chemical data from volcanic rocks in their models.

This should help them to further pinpoint the exact source of the magma, as rocks from deep mantle plumes and near-surface tectonic plates would have different chemical components.

University of Illinois at Urbana-Champaign.

Photo: C. Grandpey

Episode éruptif sur l’Agung? // An eruptive episode on Mt Agung?

14 heures: On peut voir circuler en ce moment sur les réseaux sociaux une vidéo tournée vers 17h30 (heure locale à Bali).

https://youtu.be/hTIMWIPwsPg

Elle montre un panache relativement important s’échapper du cratère de l’Agung. Le sismographe en ligne montre effectivement un épisode de hausse de la sismicité (vers 9h30 GMT). Certains avancent l’hypothèse d’une éruption phréatique car le panache semble surtout chargé en vapeur d’eau, même s’il s’y même également de la cendre. Toutefois, l’image sismique m’incite plutôt à penser qu’il s’agit d’un dégazage en bouffées, comme cela se produit périodiquement. La sismicité ne me semble pas suffisamment marquée pour parler d’une éruption phréatique. La situation demande toutefois à être contrôlée attentivement.

++++++++++

17 heures: Selon le site Internet «The Watchers», l’activité observée aujourd’hui sur le Mont Agung avait une origine phréatique. Le panache de cendre est monté jusqu’à 6 km d’altitude, sans affecter les couloirs aériens et l’aéroport international de Bali qui reste opérationnel, malgré les annulations de vols par quelques compagnies aériennes, par mesure de précaution. Bien que l’événement ait été plus intense que l’épisode précédent, le niveau d’alerte reste à 3 (Siaga) et la couleur de l’alerte aérienne à Orange. L’activité sismique inclut des séismes basse fréquence et n’a pas augmenté de manière significative au cours des derniers jours.
Il n’y a pas eu de nouvelles évacuations.
Il faut être prudent avec les gros titres et les informations publiées par les sites web de certains journaux assez faciles à identifier (la plupart d’entre eux sont les tabloïds britanniques). Ils ont tendance à rendre la situation catastrophique alors que ce n’est pas le cas.

++++++++++

20 heures: On peut voir ce soir sur les réseaux sociaux des photos de nuit de l’Agung faisant apparaître de l’incandescence au niveau du cratère. Difficile de dire s’il y a arrivée d’un nouveau magma dans les conduits d’alimentation du volcan. Hormis quelques secousses très ponctuelles, la sismicité n’a pas montré de variations significatives ces dernières heures. Les deux derniers épisodes d’émissions de cendre et de vapeur tendent à montrer toutefois que la situation est en train d’évoluer. S’agissant des dernières photos, il faut noter qu’elles ont été prises en pose longue (30 secondes) pour un diaphragme de 5,6. On peut en conclure qu’il y a une légère surexposition et que l’incandescence réelle n’est pas aussi intense.

——————————————-

14:00: One can see right now on the social networks a video shot around 17:30 (local time in Bali).
https://youtu.be/hTIMWIPwsPg

It shows a relatively voluminous plume coming out of the crater of MtAgung. The online seismograph shows an episode of increased seismicity  at about 9:30 GMT. Some people suggest the hypothesis of a phreatic eruption because the plume seems to mainly contain water vapour, even if there is also some ash. However, the seismic image rather makes me think that it is a degassing pulse, as this occurs periodically. Seismicity does not seem strong enough to speak of a phreatic eruption. The situation, however, needs to be carefully monitored.

++++++++++

17:00: According to the website « The Watchers » the activity observed today on Mt Agung had a phreatic origin. The ash plume rose up to 6 km a.s.l. but is not affecting flight paths and Bali international airport is still operational, despite cancellations by a few airlines, as a precaution. Although the event was more intense than the previous similar episode, the Alert Level remains at 3 (Siaga) and the Aviation Colour Code at Orange. Seismic activity is characterized by low frequency earthquakes and it has not increased significantly in the past days.

There have been no new evacuations.

One should be careful with the headlines and the news released by the websites of some newspapers which are quite easy to identify (most of them are the British tabloids). They tend to make the situation disastrous while it is not.

++++++++++

20:00: We can see tonight on social networks night photos of Mt Agung showing incandescence within the crater. It’s hard to say if there is a new magma in the feeding system of the volcano. Apart from some very punctual quakes, seismicity has not shown significant variations in recent hours. The last two emissions of ash and steam tend to show, however, that the situation is changing. Regarding the last photos, it should be noted that they were taken in long exposure (30 seconds) for an aperture of 5.6. It can be concluded that there is a slight overexposure and that the actual glow is not so intense.

Vue du panache de l’Agung et du tracé sismique correspondant

Incandescence dans le cratère de l’Agung (Source: ‘Budi Kaos Hitam’)

 

Un panache mantellique sous l’Ouest Antarctique ? // A mantle plume beneath West Antarctica ?

Des chercheurs de la NASA ont découvert sous la Terre Marie-Byrd en Antarctique, entre la Barrière de Ross et la Mer de Ross, un panache mantellique produisant presque autant de chaleur que le super volcan de Yellowstone. Ce point chaud donne naissance à de vastes lacs et de longues rivières sous la calotte glaciaire. La présence d’un énorme panache mantellique pourrait expliquer pourquoi la région est si instable aujourd’hui, et pourquoi elle s’est effondrée si rapidement à la fin de la dernière période glaciaire, il y a 11 000 ans.
Depuis 30 ans, les scientifiques sont persuadés qu’un panache mantellique existe sous la Terre Marie-Byrd. Sa présence expliquerait l’activité volcanique observée dans la région, ainsi que le dôme qui s’y trouve. Cependant, il n’y avait jusqu(à présent aucune preuve pour étayer cette idée. Aujourd’hui, les scientifiques du Jet Propulsion Laboratory (JPL) de la NASA ont créé des modèles numériques performants pour montrer quelle quantité de chaleur devrait exister sous la glace pour confirmer leurs observations. Ces dernières incluent le dôme et les rivières, ainsi que les lacs souterrains géants présents sur le substrat rocheux de l’Antarctique. Au fur et à mesure que les lacs se remplissent et se vident, la glace située à des centaines de mètres au-dessus monte et descend, parfois avec des variations de niveau allant jusqu’à 6 mètres.
Pour avoir une meilleure idée du fonctionnement d’un point chaud, les chercheurs du JPL ont examiné l’un des panaches mantelliques les plus étudiés sur Terre, le point chaud de Yellowstone. L’équipe scientifique a créé un modèle de panache mantellique afin de déterminer la quantité de chaleur nécessaire pour expliquer ce qui se passe au niveau de la Terre Marie-Byrd. Ils ont ensuite utilisé l’Ice Sheet System Model (ISSM), qui montre les propriétés physiques de la banquise, pour étudier les sources naturelles de chaleur et de transport de cette chaleur. Ce modèle a permis aux chercheurs de tester différents scénarios montrant comment la chaleur est produite en profondeur sous la glace.
Leurs résultats montrent qu’en général l’énergie produite par le panache mantellique ne dépasse pas 150 milliwatts par mètre carré; une énergie supérieure ferait trop fondre la glace. La chaleur produite dans le Parc National de Yellowstone est en moyenne de 200 milliwatts par mètre carré. Les scientifiques ont également identifié une zone où le flux de chaleur doit être d’au moins 150-180 milliwatts par mètre carré, mais les données laissent supposer que la chaleur en provenance du manteau à cet endroit sort d’une fracture dans la croûte terrestre.
Dans la conclusion de leur étude, les chercheurs du JPL expliquent que le panache mantellique de la Terre Marie-Byrd s’est formé il y a entre 50 et 110 millions d’années, bien avant que la terre qui se trouve au-dessus ait été recouverte par la glace. Ils ajoutent que la chaleur produite par le panache a un «impact local important» sur la calotte glaciaire. Comprendre ces processus permettra aux chercheurs de déterminer le comportement de la banquise dans les années à venir.
Source: Jet Propulsion Laboratory de la NASA.

—————————————–

Researchers at NASA have discovered a mantle plume producing almost as much heat as Yellowstone supervolcano under Marie Byrd Land in Antarctica, which lies between the Ross Ice Shelf and the Ross Sea. This hotspot is creating vast lakes and rivers under the ice sheet. The presence of a huge mantle plume could explain why the region is so unstable today, and why it collapsed so quickly at the end of the last Ice Age, 11,000 years ago.

For 30 years, scientists have suggested that a mantle plume may exist under Marie Byrd Land. Its presence would explain the volcanic activity seen in the area, as well as a dome feature that exists there. However, there was no evidence to support this idea. Now, scientists from NASA’s Jet Propulsion Laboratory (JPL) have created advanced numerical models to show how much heat would need to exist beneath the ice to account for their observations which include the dome and the giant subsurface rivers and lakes that are present on Antarctica’s bedrock. As lakes fill and drain, the ice hundreds of metres above rises and falls, sometimes by as much as 6 metres.

To have a better idea of how a hotspot works, the JPL researchers looked at one of the most well studied magma plumes on Earth, the Yellowstone hotspot. The team developed a mantle plume model to look at how much geothermal heat would be needed to explain what is seen at Marie Byrd Land. They then used the Ice Sheet System Model (ISSM), which shows the physics of ice sheets, to look at the natural sources of heating and heat transport. This model enabled researchers to test out different scenarios of how much heat was being produced deep beneath the ice.

Their findings showed that generally the energy being generated by the mantle plume is no more than 150 milliwatts per square metre; any more would result in too much melting. The heat generated under Yellowstone National Park, on average, is 200 milliwatts per square meter. Scientists also found one area where the heat flow must be at least 150-180 milliwatts per square metre, but data suggests mantle heat at this location comes from a rift in the Earth’s crust where heat can rise up.

In the conclusion of their study, the JPL researchers say the Marie Byrd Land mantle plume formed 50-110 million years ago, long before the land above was hidden by ice. They add that heat from the plume has an “important local impact” on the ice sheet. Understanding these processes will allow researchers to work out what will happen to it in the future.

Source: NASA’s Jet Propulsion Laboratory.

L’Ouest Antarctique et la terre Marie-Byrd (Source: Wikipedia)

Vue de la Terre Marie-Byrd (Crédit photo: NASA)