Pluie, neige et leur impact sur la Faille de San Andreas // The impact of rain and snow on the San Andreas Fault

Selon deux chercheurs de l’Université de Californie à Berkeley, les séismes le long de la faille de San Andreas sont influencés par les pluies et chutes de neige de l’hiver. La découverte est importante car elle permet de mieux comprendre ce qui provoque les séismes et à quel moment ils sont plus susceptibles de se produire. Les résultats de cette étude sont publiés dans la revue Science.
Les deux scientifiques travaillent sur l’ « impact saisonnier » sur les systèmes de failles On entend par impact saisonnier la façon dont la neige et la pluie pèsent sur le sol  pendant les mois d’hiver, ce qui le fait se comprimer. Quand la sécheresse revient, le poids se retire et le sol rebondit en quelque sorte. Selon les scientifiques, ce processus modifie le stress exercé sur la structure tectonique de l’État de Californie, en poussant et tirant sur les lignes de failles, y compris la Faille de San Andreas.
La Faille de San Andreas se trouve à la limite tectonique entre les plaques Pacifique et nord-américaine, et s’étire sur 1280 km à travers la Californie. En septembre 2016, on a enregistré un essaim d’environ 200 petits événements dans le secteur de la Salton Sea, juste au sud de la Faille. Cela a fait naître les craintes qu’un séisme de plus grande ampleur puisse avoir lieu dans le court terme. La zone de faille où l’essaim s’est produit n’a pas bougé depuis plus de 300 ans. Comme de puissants séismes se produisent normalement le long de la faille tous les 150 à 200 ans, les scientifiques pensent qu’un «Big One» est en retard.
Dans leur dernière étude, les deux chercheurs ont mesuré le mouvement vertical le long des lignes de faille en Californie pour observer les changements résultant de l’impact saisonnier. Ils ont pris en compte neuf années de données GPS sur la déformation verticale pour identifier les modifications de contraintes qui produisent de petits séismes le long des lignes de failles. A partir de ces résultats, ils ont calculé le délai de contrainte saisonnier pour chaque faille afin de calculer un cycle de contrainte moyen. Les résultats montrent que la faille de San Andreas connaît une hausse de petits séismes à la fin de l’été et au début de l’automne, alors que les failles situées le long de la bordure orientale de la Sierra Nevada enregistrent plus de séismes à la fin du printemps et au début de l’été. Les scientifiques précisent que cela ne signifie pas forcément qu’il y a une «saison sismique», mais que l’« impact saisonnier » joue un rôle. Même si la neige et les précipitations annuelles n’augmentent que légèrement le risque sismique, leur découverte fournit de nouvelles informations sur la façon dont les failles se rompent et pourquoi elles se rompent, ainsi que les contraintes qui sont mises en jeu.
L’étude ne prend pas directement en compte les séismes majeurs, mais les chercheurs ont examiné des événements historiques de magnitude supérieure à M 5.5 jusqu’en 1781. Ils ont constaté une légère augmentation de la sismicité lorsque l’impact saisonnier est plus élevé. L’étude ne prend pas en compte, et ne donne donc pas d’explications, sur l’essaim sismique enregistré sur la faille de San Andreas en septembre 2016.
Au début de l’année 2017, les scientifiques de l’Université de Stanford ont déclaré que la Californie connaîtrait à l’avenir plus d’inondations hivernales et de sécheresses estivales en raison du changement climatique. Les auteurs de l’étude disent qu’ils ne savent pas si des conditions météorologiques plus extrêmes entraîneront davantage de séismes dans les années à venir car ils n’ont pas exploré les tendances sur le long terme.
Les scientifiques prévoient maintenant d’affiner leur modèle d’impact saisonnier pour mieux comprendre «ce qui déclenche les séismes». Ils vont continuer d’examiner l’impact saisonnier et les cycles sismiques en Alaska. Dans cet Etat, il y a davantage de précipitations tout au long de l’année, ce qui entraîne un impact saisonnier plus important. En explorant un environnement tectonique différent avec différents modèles d’impact, ils espèrent mieux comprendre la fréquence des séismes en fonction des variations de contraintes saisonnières.
Adapté d’un article paru dans Newsweek.

—————————————–

According to two researchers from the University of California, Berkeley, earthquakes along the San Andreas Fault in California are being triggered by winter rain and snowfall. The finding is important as it helps us understand what triggers earthquakes—and when they are more likely to strike. Their findings are published in the journal Science.

The scientists were investigating what impact seasonal loading has on fault systems. Seasonal loading refers to how snow and rain over the winter months acts as a weight, causing the land to depress. However, when it dries up, the weight is removed and the ground rebounds. This process, the scientists found, changes the stress placed on California’s state tectonics, pushing and pulling on the fault lines, including the San Andreas Fault.

The San Andreas Fault forms part of the tectonic boundary between the Pacific and North American Plate, stretching 1280 km through California. In September last year, there was a swarm of around 200 small earthquakes in the Salton Sea, just south of the fault. This raised concerns that a much larger earthquake could soon take place. The region of the fault where the swarm occurred had not ruptured for over 300 years. Large earthquakes normally occur along the fault every 150 to 200 years, so scientists think a “Big One” is overdue.

In the latest study, the two researchers measured vertical movement along the state’s fault lines to track changes resulting from seasonal loading. They used nine years’ worth of GPS data on vertical deformation to identify the stress changes on the fault lines that produce small earthquakes. From this, they calculated the seasonal stress time for each fault location to calculate an average stress cycle. Findings showed that the San Andreas Fault has an increase in small earthquakes in late summer and early fall, while the faults along the eastern edge of the Sierra Nevada see more earthquakes in late spring and early summer. The scientists indicate that this does not mean there is an “earthquake season,” but that seasonal loading plays a role. While the annual snow and rainfall increases the chance of earthquakes by a small amount, their discovery provides new information on how and why faults rupture, including the different stresses involved.

The study does not look at large earthquakes directly, but the researchers did look at historic events bigger than M 5.5 going back to 1781. They found there was a slight increase in earthquakes when seasonal loading was high compared to when it was low. However, the current findings do not explain the swarm of earthquakes at the San Andreas Fault in September 2016 which was not taken into account in the study.

Earlier this year, Stanford University scientists said California will experience more winter flooding and summer droughts in the future as a result of climate change. The authors of the study say it is not clear whether more extreme weather would lead to more earthquakes in the future as they did not explore longer-term trends.

Next, the scientists plan to refine their seasonal loading model to better understand “what makes earthquakes go.” They are continuing to look at seasonal loading and the earthquake cycle in Alaska. In that State there is more precipitation throughout the year that results in larger loads. By exploring a different tectonic environment with different loading patterns, they hope to learn more about the timing of the earthquakes with respect to the seasonal stress changes.

Adapted from an article in Newsweek.

Dans la faille de San Andreas… (Photos: C. Grandpey)

Découverte d’une nouvelle faille en Californie // Discovery of a new fault in California

drapeau-francaisDes scientifiques de l’Université de Californie, de la Scripps Institution  et de l’Université du Nevada ont révélé la semaine dernière dans le Bulletin of the Seismological Society of America qu’ils ont découvert une nouvelle ligne de faille qui longe le bord oriental de la Mer de Salton et qui est parallèle à la faille de San Andreas. Cette ligne de faille est probablement liée de façon complexe à la faille de San Andreas et permettra peut-être d’expliquer pourquoi aucun séisme majeur n’a eu lieu dans la partie sud de la faille de San Andreas depuis plus de 300 ans.
Les chercheurs de la Scripps ont utilisé une panoplie de techniques d’imagerie pour cartographier les déformations dans les couches sédimentaires à l’intérieur de la Mer de Salton. Ils ont pu obtenir une image précise de la faille qui s’étire à l’ouest de la faille de San Andreas.
L’annonce de la découverte de cette faille intervient quelques heures après un essaim sismique incluant près de 200 petits événements dans la Mer de Salton et qui a réveillé la crainte toujours présente du «Big One». Toutefois, selon les chercheurs, la nouvelle faille, baptisée Salton Trough Fault, n’a aucun lien avec le dernier essaim sismique et l’annonce de sa découverte est une simple coïncidence.
L’USGS a tout d’abord déclaré que l’essaim sismique, dont la magnitude maximale était de M 4.3, augmentait le risque d’un séisme plus important, mais la situation est redevenue normale quelques heures après la détection de l’essaim.
Les scientifiques ont fait remarquer que la découverte de nouvelles failles est de moins en moins fréquente dans la Californie du Sud qui est bien surveillée dans ce domaine, mais la découverte de la Salton Trough Fault était délicate car elle semble se trouver majoritairement sous l’eau. De nouvelles recherches seront nécessaires pour déterminer sa longueur et sa localisation exacte.  Les études montrent qu’au cours du dernier millénaire l’extrémité sud de la faille de San Andreas a connu des séismes de M 7 environ tous les 175 à 200 ans, même si aucun événement majeur n’a pas eu lieu depuis plus de 300 ans.
La question que l’on est en droit de se poser est la suivante : Qu’est-ce qui retient l’énergie produite par les contraintes au niveau de la faille et empêche le déclenchement d’un séisme? L’énergie accumulée est-elle transférée vers une autre faille capable de l’engranger? Ou bien la faille est-elle « coincée » quelque part le long de la faille de San Andreas?
Les scientifiques espèrent savoir si la Salton Trough Fault absorbe une partie des contraintes produites par les plaques le long de la de la faille de San Andreas. Cela expliquerait pourquoi le sud de la faille de San Andreas n’a toujours pas déclenché de séisme et a réussi à contenir l’énergie accumulée pendant plusieurs siècles. Il est toutefois encore difficile de savoir quelle relation existe entre la Salton Trough Fault et la faille de San Andreas et comment elles interagissent. On espère que de nouvelles recherches permettront de répondre à ces questions.
Source: Presse américaine.

 ————————————-

drapeau-anglaisScientists from the University of California, the Scripps Institution and the University of Nevada revealed last week in the Bulletin of the Seismological Society of America that they have discovered a new fault line running along the eastern edge of the Salton Sea parallel to the San Andreas Fault. It is likely complexly linked to the San Andreas Fault and may be the clue to why a major earthquake hasn’t occurred in the southern portion of the San Andreas Fault in over 300 years.

The Scripps research team used a variety of imaging techniques to map deformation in sediment layers within the Salton Sea. They were able to accurately image the fault, which is located to the west of the San Andreas Fault.

The announcement follows a recent swarm of almost 200 small earthquakes at the Salton Sea and heightened concerns about the « Big One. » However, according to the researchers, the new fault, named Salton Trough Fault, has no connection to the recent quake swarm and the timing of the announcement is coincidental.

USGS initially said the swarm, with a maximum magnitude of M 4.3, temporarily increased the risk of a bigger earthquake, but the situation went back to normal a few hours after the swarm was detected.

The scientists said the discovery of new faults is becoming less common, particularity in well-surveyed Southern California, but this one was difficult to find because it appears to be under the water. More research is needed to determine the fault’s full length and location.

Research suggests that over the past thousand years, the southern end of the San Andreas Fault has seen M 7 earthquakes roughly every 175 to 200 years, although a major event hasn’t occurred in more than 300 years.

The logical next questions are: what is holding the strain build up? Has it transferred to another fault, which accommodates the additional prolonged strain? Or is the fault “stuck” somewhere along the San Andreas Fault?

Scientists hope the newly discovered Salton Trough Fault will provide clues as to whether the new fault accommodates some of the strain coming from the larger San Andreas Fault. This would provide evidence as to why the southern San Andreas Fault hasn’t triggered an earthquake and released built up energy in several hundred years. However, it’s still unclear as to how the Salton Trough Fault and the San Andreas Fault interact and influence one another. It is hoped that additional research will help answer these questions.

Source: U.S. newspapers.

salton-sea

Emplacement de la nouvelle faille (Source: Université de Californie)

 

Le soleil, la lune et la faille de San Andreas

drapeau-francaisUne nouvelle étude conduite par des scientifiques de l’USGS a révélé que l’attraction gravitationnelle du Soleil et de la Lune, responsable du déclenchement des marées, peut également provoquer des types particuliers de séismes le long de la faille de San Andreas.
Il y a une dizaine d’années, les chercheurs ont découvert des séismes basse fréquence sur la portion de faille « Parkfield » en Californie où se libère de l’énergie tectonique entre la partie nord et la partie sud de ce secteur.
Les scientifiques ont examiné les données relatives à 81000 séismes du même type enregistrés entre 2008 et 2015 le long de la portion Parkfield, puis ils les ont comparées aux données représentant la marée bimensuelle, autrement dit un cycle de marée de deux semaines. La comparaison a révélé que les séismes se produisent le plus souvent pendant les périodes où la marée monte au rythme le plus rapide.
Il peut sembler surprenant de voir que la Lune, quand son attraction s’exerce dans le sens de glissement de la faille, intensifie et accélère ce dernier. Cela montre que la faille est extrêmement sensible, surtout quand on pense qu’il y a 30 kilomètres de roche qui la surmontent.
La force des marées dépend de la position relative du Soleil et la Lune l’un par rapport à l’autre. Les marées terrestres sont à leur maximum quand les deux astres sont alignés, et à leur minimum quand ils sont perpendiculaires. Certaines failles sont plus sensibles aux marées que d’autres, et leur réaction dépend aussi de leurs caractéristiques, telles que leur orientation ou leur proximité par rapport à la croûte de la planète.
La faille de San Andreas n’est pas orientée d’une manière qui la rendrait sensible à la force maximale des marées. Il est donc très étonnant qu’elle produise ce type de séismes basse fréquence. Ces derniers ont des magnitudes inférieures à  M1 et ils se situent entre 15 et 30 kilomètres sous la surface, à proximité du point de transition entre la croûte et le manteau. Ces séismes sont importants car ils sont susceptibles de fournir aux sismologues de précieuses informations sur la région la plus profonde de la faille qui n’est accessible d’aucune autre manière. Ils leur montrent aussi que la faille se poursuit en dessous de la zone où cessent les séismes classiques et typiques de la faille de San Andreas, à environ 10 ou 12 km de profondeur. Les séismes basse fréquence peuvent servir à mesurer l’amplitude du glissement en un point particulier de la partie profonde de la faille. Ils fournissent également aux sismologues un outil pour mesurer le temps de recharge de la faille en certains endroits. Ils représentent un moyen pour estimer directement la vitesse à laquelle les contraintes s’exercent sur la faille.

Source: Proceedings of the National Academy of Sciences of the United States of America (2016).

Il convient de noter qu’en 2002, un article publié dans la revue Geology abordait les effets des marées sur les microséismes des fonds marins. Au cours de l’été 1994, un petit réseau de sismographes installé au fond de l’océan a enregistré 402 événements microsismiques sur une période de deux mois, sur la caldeira sommitale du volcan sous-marin Axial, sur la dorsale Juan de Fuca. Le tremor harmonique a également été enregistrée sur tous les instruments, et les marées terrestres et océaniques ont été enregistrées sur des inclinomètres installés avec les sismomètres. Les microséismes ont montré une forte corrélation avec les marées basses, ce qui laisse supposer que les fracturations se produisent de préférence quand la « recharge » de l’océan est au minimum. Le tremor harmonique, qui est censé correspondre au mouvement du fluide à très haute température dans les fractures, a également connu une périodicité correspondant aux marées.

————————————–

drapeau-anglaisA new study led by USGS scientists revealed that the gravitational pull of Sun and Moon, responsible for inducing the tides, can also trigger special types of earthquakes on the San Andreas fault.

The researchers discovered the low-frequency earthquakes on the Parkfield section in California, some 10 years ago. The San Andreas fault releases tectonic energy from the northern to the southern portion at that location.

The scientists surveyed data from 81 000 earthquakes of the same type in the period between 2008 and 2015 along the Parkfield section and then compared them to the data representing the fortnightly tide, a two-week tidal cycle. The comparison revealed the tremors will probably occur during the time when the tide rose at the fastest pace, the waxing period.

It may seem very surprising to see that the Moon, when it’s pulling in the same direction that the fault is slipping, causes the fault to slip more and faster. What it shows is that the fault is extremely weak, given that there are 30 kilometres of rock sitting on top of it.

The strength of occurring tides depends on the relative location of the Sun and Moon in respect of each other. Earth tides are at their maximum when they are aligned and weakest when they are perpendicular. Some faults are more sensitive to the tides than others, and the response also depends on the faults’ characteristics, such as their orientation or the proximity to the planet’s crust.

The San Andreas fault is not oriented in a way which would make it susceptible to the full tidal strength, and that means it is quite amazing it produces the response tremors. Low-frequency earthquakes are of magnitudes lower than 1.0, located between 15 and 30 kilometres below the surface, close to where the crust transitions to the mantle. These tremors are important because they are capable of providing the scientists valuable information about the deeper parts of the fault that cannot be accessed in other way. They tell them that the fault continues down below where the regular or typical earthquakes stop on the San Andreas, about 10 or 12 km deep. The low-frequency earthquakes can be used as measurements of how much slip is happening at each little spot on the deep part of the fault. They also provide the seismologists with a tool to measure the recharge time of the fault along some locations. It is a way to directly estimate the rate at which stress is accumulating on the fault.

Source: Proceedings of the National Academy of Sciences of the United States of America (2016).

It should be noted that in 2002 an article released in Geology dealt with the tidal effects on seafloor microearthquakes. In the summer of 1994, a small ocean-bottom seismograph array located 402 microseismic events, over a period of two months, on the summit caldera of the Axial seamount on the Juan de Fuca Ridge. Harmonic tremor was also observed on all instruments, and Earth and ocean tides were recorded on tiltmeters installed within the seismometer packages. Microearthquakes showed a strong correlation with tidal lows, suggesting that faulting is occurring preferentially when ocean “loading” is at a minimum. The harmonic tremor, interpreted as the movement of superheated fluid in cracks, also had a tidal periodicity.

Parksfield

Vue (en rouge) de la section « Parkfield » de la faille de San Andreas (Source: USGS)

San Andreas 01

Dragon’s Back Ridge dans la Plaine de Carrizo (Photo: C. Grandpey)

San Andreas 04

Vue de la faille de San Andreas dans la plaine de Carrizo (Photo: C. Grandpey)