Kilauea (Hawaï) : 13ème épisode éruptif ! // 13th eruptive episode !

La question que l’on se pose maintenant à propos du Kilauea est de savoir combien d’épisodes éruptifs le volcan va nous proposer. L’épisode 13 a commencé à 2 h 36 (heure locale) le 10 mars 2025. Les fontaines de lave ont atteint des hauteurs de 120 à 150 m. Comme d’habitude, cet épisode a été précédé d’une activité de spattering sporadique dans la bouche nord, avant d’augmenter en intensité. La lave a jailli de la bouche nord à 2 h 36 et de hautes fontaines ont commencé à apparaître environ 10 minutes plus tard. Les coulées de lave ont recouvert 20 à 30 % du sol du plancher de l’Halemaʻumaʻu. Le tilt est passé de l’inflation à la déflation vers 2 h 36 du matin, à peu près au même moment où les coulées de lave ont commencé à apparaître sur le plancher du cratère. Il sera intéressant de voir si l’inflation apparaîtra dans les prochaines heures, annonçant un probable 14ème épisode.
Source : HVO.


Image webcam des fontaines de lave

———————————————

The real question about Kilauea these days is to know how many eruptive episodes the volcano will offer us. Episode 13 began at 2:36 a.m.(local time) on March 10th, 2025.  Fountains reached heights of 120-150 m. As usual , this episode was preceded by small, sporadic spatter fountains within the north vent and continued to increase in intensity. Lava erupted from the north vent at 2:36 a.m and high fountains began about 10 minutes later. Lava flows from the north vent have covered 20-30% of Halemaʻumaʻu crater floor. Tilt switched from inflation to deflation at about 2:36 a.m., about the same time lava flows began erupting onto the crater floor. It will ne interesting to see whether inflation will appear in the next hours, announcing a likely 14th episode.

Source : HVO.

Hawaï : Un LiDAR au HVO // Hawaii : A LiDAR at HVO

De nos jours, le LIDAR est un instrument précieux dans le domaine de la cartographie topographique. Acronyme de l’anglais LIght Detection And Ranging, autrement dit « détection et télémétrie par la lumière  », c’est une technologie de télédétection qui utilise des faisceaux laser pour mesurer des distances et des mouvements précis en temps réel.

Les données LiDAR permettent de générer un large éventail de supports, des cartes topographiques détaillées aux modèles 3D précis pour guider en toute sécurité un véhicule autonome dans un environnement en perpétuel mouvement. La technologie LiDAR est également utilisée pour évaluer les dangers et les catastrophes naturelles comme les coulées de lave, les glissements de terrain, les tsunamis et les inondations.

L’Observatoire des volcans d’Hawaï (HVO) dispose désormais de son propre système LiDAR, ce qui permettra aux scientifiques de disposer de données cartographiques plus fréquemment qu’auparavant.

Le LiDAR fonctionne en émettant plusieurs milliers d’impulsions laser par seconde, puis en enregistrant avec précision les temps de retour des ondes lumineuses une fois qu’elles ont été réfléchies par différentes surfaces dans l’espace tridimensionnel. Sur les volcans hawaïens,il s’agit le plus souvent de surfaces de coulées de lave. Les temps de retour permettent de calculer automatiquement les distances par rapport à ces surfaces, tout en fournissant leurs coordonnées X, Y et Z lorsque la position de l’instrument est connue avec précision. La compilation de toutes les mesures donne naissance à un « nuage de points » qui décrit la zone étudiée.
Les systèmes LiDAR sont complexes et donc coûteux. C’est la raison pour laquelle les études antérieures sur l’île d’Hawaï ne pouvaient être effectuées qu’en fonction de la disponibilité des fonds et des organismes possédant cet équipement. La situation a changé avec l’adoption de la loi de 2019 sur les crédits supplémentaires pour les secours en cas de catastrophe (Additional Supplemental Appropriations for Disaster Relief Act) par le Congrès américain, ce qui a fourni au HVO les fonds nécessaires pour acheter un système LiDAR. Le nouvel outil est un LiDAR aéroporté Riegl VUX-120 qui peut être monté sur un hélicoptère et permet de réaliser des relevés de zones plus étendues qu’un système terrestre traditionnel.
L’instrument est arrivé en pièces détachées en novembre 2022. Il a été monté et est devenu opérationnel grâce à la collaboration de l’Université d’Hawaï et de l’armée américaine. Les travaux de montage ont été achevés en août 2024.
Un technicien de l’armée américaine est venu au HVO en septembre pour montrer au personnel comment utiliser le VUX-120 et donner des conseils lors de sa première utilisation. Le LiDAR a effectué avec succès son premier vol le 5 septembre à bord d’un hélicoptère sous lequel il avait été monté. Il a été décidé de survoler la zone de l’éruption du 3 juin sur le rift sud-ouest du Kilauea. Ce premier vol a été un succès complet.
Les données ont été capturées avec une densité d’environ 60 points par mètre carré, ce qui a permis la réalisation d’un modèle topographique de haute précision de la zone de l’éruption du 3 juin. La qualité des données pourra être améliorée à l’avenir, ce qui est particulièrement important lorsqu’il s’agit d’évaluer les risques volcaniques.
Le HVO continue de s’appuyer sur des relevés photographiques pour établir une cartographie rapide de la topographie lors des éruptions, mais le VUX-120 fournira des ensembles de données plus précis lorsque le HVO disposera de suffisamment de temps pour effectuer les relevés. Cela n’a pas été possible lors de la récente et brève éruption dans la Middle East Rift Zone du Kīlauea.
Source : USGS / HVO.

Image du haut : un instantané du nuage de points du vol d’essai LiDAR du HVO du 5 septembre le long de la zone de rift sud-ouest du Kīlauea. Les points sont affichés en vraies couleurs grâce à une caméra intégrée au système LiDAR. La largeur de cette vue s’étend sur environ 440 mètres.
Image du bas : presque la même vue depuis un survol en hélicoptère du HVO le 6 février.

—————————————————

Today, LIDAR is a valuable tool in the field of topographic mapping. Acronym for LIght Detection And Ranging, it is a remote sensing technology that uses laser beams to measure precise distances and movements in real time. LiDAR data can be used to generate a wide range of media, from detailed topographic maps to precise 3D models to safely guide an autonomous vehicle in a constantly moving environment. LiDAR technology is also used to assess hazards and natural disasters such as lava flows, landslides, tsunamis and floods.

The Hawaiian Volcano Observatory (HVO) now has a LiDAR system of its own to generate mapping products more frequently than ever before. The LiDAR operates by emitting many thousands of laser pulses per second, then recording the precise return times of the light waves after reflecting off different features in three-dimensional space. On Hawaiian volcanoes, these features are usually the surfaces of lava flows. The return times are used to automatically calculate distances to those features, providing their X, Y and Z coordinates when the instrument’s position is precisely known. Compiling all the individual measurements results in a “point cloud” depicting the surveyed area.

LiDAR systems are complex, and therefore expensive, so prior surveys on Hawaiʻi Island could only be conducted when permitted by the availability of funding and collaborators. That changed with passage of the Additional Supplemental Appropriations for Disaster Relief Act of 2019 by U.S. Congress, providing HVO with funds to purchase a LiDAR system. The new tool is a Riegl VUX-120 airborne LiDAR system which is mountable to a helicopter and enables surveys of more expansive areas than a terrestrial system.

The instrument arrived unoperational in November 2022. It was mounted and became operational thankds to the collaboration of the University of Hawaiʻi and the U.S. Army. The setup work was completed in August 2024.

A U.S. Army technician visited the Observatory in September to teach staff how to use the VUX-120 and assist during its first operation. The system successfully completed its first flight on September 5th aboard a helicopter to the belly os which the LiDAR had been mounted. It was decided to survey the vicinity of the June 3rd Kīlauea Southwest Rift Zone eruption. This first flight was a complete success.

Data were captured at a density of about 60 points per square meter, enabling the construction of a high-accuracy digital elevation model of the June 3rd eruption vicinity. Some lessons were learned to further improve data quality in the future, which is especially important when the resulting models might be used for assessments of volcanic hazards.

HVO continues to rely on photographic surveys for rapid-response mapping of topography during eruptions, but the VUX-120 will provide more definitive datasets when time allows for its slightly longer-duration surveys, which were not possible during the recent brief Kīlauea middle East Rift Zone eruption.

Source : USGS / HVO.

Hawaii : la Route de la Chaîne des Cratères / Chain of Craters Road

Les volcanophiles qui ont visité la Grande Ile d’Hawaii ont forcément emprunté la célèbre Chain of Craters Road qui parcourt le versant sud-est du Kīlauea en suivant la partie supérieure de la zone de rift est (Upper East Rift Zone – UERZ).

 

Source: USGS

C’est une route en cul-de-sac, d’une longueur de 29 kilomètres, avec un dénivelé de 1128 mètres. Elle est entièrement goudronnée et les nombreux dégagements et parkings tout au long de son parcours sont parfaits pour prendre des photos des champs de lave, des cratères et des belles laves cordées typiques du volcanisme hawaiien.

 

Photo: C. Grandpey

Le premier tronçon est construit en 1928.

En 1959, elle est prolongée sur la majorité de son parcours actuel jusqu’à la côte pacifique afin de rejoindre la ville de Kalapana. Elle mesurait alors 37 kilomètres.

Entre 1969 et 1974, elle est coupée sur près de quinze kilomètres par une coulée émise par le Mauna Ulu. Elle ne sera rouverte qu’en 1979 avec un nouveau tracé qui passe plus au sud.

En 1983, des coulées de lave émises par la très longue éruption du Puʻu ʻŌʻō coupent la route et détruisent Kalapana.

Depuis 1986, elle subit les caprices du volcan et est régulièrement coupée par des coulées de lave. Les neuf derniers kilomètres de la route se trouvent sous la lave ; les coulées les plus récentes datent de 2003.

 

Source: National Park Service

Parcourir la Chain of the Craters Road est un régal pour le volcanophile. Depuis le carrefour avec la Crater Rim Drive, elle suit une direction générale vers le sud-est.

500 mètres après son point de départ, la route traverse une petite coulée de lave émise en 1974.

Une centaine de mètres plus loin, elle longe sur la droite le Lua Manu, le premier des nombreux cratères qui lui ont donné son nom. On peut admirer des coulées de lave produites par une éruption de trois jours en juillet 1974.

 

Photo: C. Grandpey

Un kilomètre plus loin, c’est le Puhimau sur la gauche puis le Koʻokoʻolau sur la droite.

La route dépasse ensuite le gouffre de Devils Throat puis passe à travers un petit cône de cendre, ce qui permet d’observer sa structure interne. Ces cratères se sont formés au cours des 750 dernières années.

On traverse 300 mètres plus loin une nouvelle coulée de lave, datant d’une éruption de 7 jours en mai 1973, et la route contourne le Hiʻiaka Crater.

 

Photo : C Grandpey

Après un kilomètre, elle arrive au Pauahi Crater où la route longe la lèvre méridionale.

En le quittant, après 1,6 kilomètre, une route en cul-de-sac se prolonge par la Napau Crater Trail qui se dirige vers l’est en direction du Puʻu Huluhulu, du Mauna Ulu, du Makaopuhi, du Nāpau, du Kamoamoa et enfin du Pu’uO’o,

Après ce carrefour, la Chain of Craters Road se dirige vers le sud en s’éloignant des cratères de l’East Rift Zone (ERZ). La route coupe une succession de coulées de lave émises par le Mauna Ulu a été actif entre 1969 et 1971, puis entre 1972 et 1974.

On arrive bientôt à Kealakomo, un lieu de pique-nique qui offre un point de vue sur l’océan Pacifique. Le site se trouve sur le rebord du Hōlei Pali à 610 mètres d’altitude.

 

Photo: C. Grandpey

Cet escarpement est ensuite abordé par un virage en épingle et la route reprend une direction vers l’est quelques kilomètres plus loin en recoupant certaines des coulées de lave déjà traversées en amont.

Un peu plus de dix kilomètres après Kealakomo débutent deux sentiers dont un, de 1,5 kilomètre de longueur, mène aux pétroglyphes de Puʻu Loa.

 

Photo: C. Grandpey

Après avoir parcouru les deux derniers kilomètres, la fin de la route est atteinte lorsque les coulées de lave empêchent toute progression juste après l’arche marine d’Hōlei.

 

Photo: C. Grandpey

Images du Santiaguito (Guatemala)

Francis Balland, fidèle lecteur de mon blog, a effectué un voyage en Amérique Centrale début mars 2023 avec une étape au Guatemala où il a pu observer les dômes du Santiaguito, en particulier le dôme Caliente, actuellement le plus actif du complexe.

Francis confirme l’activité soutenue mentionnée dans ma note du 30 mars : dégazage permanent, avec 1 à 3 explosions par heure, coulée active avec avalanche de blocs en permanence plus ou moins fournie

Merci à Francis d’avoir accompagné son message de quelques photos.