Mesure de la hauteur des fontaines de lave // Measuring the height of lava fountains

L’un des derniers épisodes de la série « Volcano Watch » publié par l’Observatoire des volcans d’Hawaii – le HVO – est consacré aux fontaines de lave et à la mesure de leur hauteur.
En raison de la pression accumulée par les gaz, le début d’une éruption est souvent la période la plus dynamique et la plus spectaculaire. L’une des premières missions des géologues est de mesurer la hauteur des fontaines de lave et la dimension des bouches éruptives pour essayer d’évaluer l’énergie émise par l’éruption.
Lors des deux dernières éruptions sommitales du Kilauea, les fontaines de lave les plus hautes se sont produites au début de ces événements. Cependant, lors de l’éruption de 2018, les géologues ont dû attendre près d’un mois avant de pouvoir observer la plus haute fontaine car le volcan a d’abord émis un magma plus ancien et plus froid, donc moins propice aux fontaines de lave qui supposent une lave à haute température. .
La mesure de la hauteur d’une fontaine de lave pendant une éruption peut être effectuée avec quelques instruments simples et une trigonométrie de base.
Tout d’abord, les géologues mesurent les angles vers le haut et le bas de la fontaine. Cela peut sembler simple mais peut devenir délicat lorsque la base est difficilement visible ou lorsque le sommet de la fontaine est mal défini.
On entend par ‘sommet de la fontaine de lave’ la limite supérieure de la colonne telle que la voit un oeil humain. C’est le point où la plus grande partie de la lave cesse de monter avant de retomber au sol. Il ne faut pas prendre en compte les particules les plus hautes soulevées par le panache de gaz et qui montent jusqu’à plusieurs dizaines ou plusieurs centaines de mètres au-dessus de la colonne de lave.
La base de la fontaine est facile à déterminer dès le début d’une éruption : c’est le point où la lave jaillit du sol. Même si les géologues arrivent rapidement sur le site éruptif, il est rare d’être présent au moment précis où s’ouvre une fracture, de sorte que la base peut déjà être cachée par des projections de lave et/ou des cendres qui se sont accumulées autour de la bouche active.
Pour effectuer les mesures d’angle, on a besoin d’un inclinomètre à main, d’un télémètre (laser ou optique) ou d’une application accessible sur son smartphone. Pour plus de facilité dans les calculs, les géologues du HVO mesurent toujours l’angle entre la hauteur de l’oeil et le haut de la fontaine, puis un deuxième angle entre la hauteur de l’oeil et le bas de la fontaine. De cette façon, peu importe où on se trouve par rapport à la fontaine
Il est important de tenir l’instrument de mesure au niveau des yeux et de ne pas le déplacer vers le haut ou vers le bas entre les deux mesures. C’est un peu comme si on utilisait un trépied.
Ensuite, les angles mesurés sont notés et les géologues utilisent la trigonométrie pour calculer les distances verticales pour chaque angle – autrement dit les hauteurs partielles pour chaque segment. La dernière partie du calcul consiste à additionner les deux hauteurs.
Pour connaître la distance jusqu’à la fontaine de lave, les géologues du HVO utilisent un télémètre laser précis qui mesure non seulement la distance, mais aussi l’angle, fait le calcul, puis indique la hauteur verticale.
Certaines applications pour smartphones peuvent calculer la distance si on connaît la hauteur d’un élément qui se trouve à proximité immédiate de la fontaine. Si les visiteurs du Parc National des Volcans d’Hawaii éprouvent le désir de mesurer les fontaines de lave, ils peuvent le faire depuis la nouvelle plateforme d’observation de Keanakākoʻi qui offre une vue sur le cratère. S’ils ont la chance de voir des fontaines de lave, ils peuvent les mesurer, ou ils peuvent simplement estimer la hauteur en sachant que le cône de projection (spatter cone) mesure environ 20 à 25 m de hauteur.
Source : USGS/HVO.

—————————————–

One of the last episodes of the series « Volcano Watch » released by the Hawaiian Volcano Observatory is dedicated to lava fountains and the measuring of their height.

Because of the accumulated pressure of the gases, the onset of an eruption is frequently the most dynamic and vigorous period. One of the geologists’ first mission is to measure the height of lava fountains and other vent dimensions to help assess how energetic the eruption is.

In both recent summit eruptions of Kilauea Volcano, the highest fountaining occurred at the start of the eruptions. However, during the 2018 event, geologists had to wait nearly a month to observe the highest fountaining which took place nearly a month into the eruption due to the primary magma pushing out older, cooler magma.

Measuring the height of a lava fountain during an eruption can be accomplished with a few simple instruments and some basic trigonometry.

First, geologists measure the angles to the top and bottom of the fountain. This may seem simple, but it can get tricky when the base becomes obscured or when the top of the fountain has an indistinct boundary.

The top of the lava fountain is defined as the upper boundary of the optically dense column. This is where the vast majority of the lava stops rising and falls back to the ground. This is not to be confused with the highest visible particles, which could be lifted up by the gas plume several tens to hundreds of meters above the lava column.

The base is easy to determine right at the start of an eruption: it is where lava is erupting from the ground. Even though geologists arrive quickly, it is rare to be present exactly when a fissure opens, so the base might already be hidden as lava, spatter, and cinder accumulates around the vent area.

To make the angle measurements, you need either a hand-held inclinometer, compass, rangefinder (laser or optical), or even a handy app on your phone. To make the math easy, HVO geologists always measure the angle from their eye-height to the top of the fountain and then a second angle from their eye-height to the bottom of the fountain. This way no matter where you are in relation to the fountain

It is important to hold the instrument at eye level and not move the instrument up or down between the two measurements, as if you were usuing a tripod.

Second, these measured angles can then be taken and geologists use trigonometry to calculate the vertical distances for each angle — partial heights for each segment. The final part of the calculation is to add these two heights together.

To know the distance to the lava fountain, HVO geologists use an accurate laser range finder that not only measures the distance, but also the angle, does the math, and then reports back the vertical height.

Some smart phone apps can calculate the distance if you know the height of something immediately adjacent to the fountain. If visitors to Hawaii Volcanoes National Park are anxious to measure lava fountains, they can do it from the new Keanakākoʻi viewing area which allows a view into the crater. If they are lucky enough to see lava fountains, they can measure them, or they can simply estimate the height knowing that the spatter cone is about 20–25 m high.

Source: USGS / HVO.

 

En 1959, au cours de l’éruption du Kilauea Iki, les fontaines de lave ont atteint 580 mètres de hauteur (Crédit photo: USGS)

Les séismes à Yellowstone // Earthquakes at Yellowstone

Un article récent paru dans le journal USA Today nous rappelle que le risque d’une super éruption n’est pas le seul dans le Parc National de Yellowstone. Il ne faudrait pas oublier le risque d’un séisme majeur dans la région. Selon le responsable scientifique de l’Observatoire Volcanologique de Yellowstone (YVO), «il s’agit d’un risque sous-estimé dans la région de Yellowstone. Il peut y avoir, et il y aura dans le futur, des séismes de magnitude 7. »

Yellowstone connaît en moyenne 1 500 à 2 500 séismes par an ; la plupart d’entre eux sont si faibles qu’ils ne sont pas ressentis par la population, mais de puissants séismes se sont produits dans un passé pas si lointain. Ainsi, le 17 août 1959, un séisme de magnitude 7,3 a secoué le Parc, causant la mort de 28 personnes lorsqu’un glissement de terrain a enseveli un camping. Plus de 80 millions de tonnes de roches se sont effondrées, bloquant une rivière et formant un lac, baptisé à juste titre Earthquake Lake, que l’on peut encore voir aujourd’hui. C’est le plus important tremblement de terre historique de l’Intermountain West, une région située entre les Montagnes Rocheuses à l’est et la Chaîne des Cascades et la Sierra Nevada à l’ouest.
La probabilité d’un séisme de même intensité est plus grande qu’une éruption, même mineure, du super volcan de Yellowstone. Cependant, contrairement à une éruption volcanique, les puissants séismes ne montrent pas de signes avant-coureurs. Ils sont susceptibles de se produire, mais on est incapable de dire quand.
Les risques posés par un puissant séisme aujourd’hui à Yellowstone seraient plus importants qu’il y a près de 60 ans en raison du nombre plus important de visiteurs, en particulier en été. Plus de 4 millions de personnes visitent le Parc chaque année, avec des pics en juillet et en août. De plus, Yellowstone se trouve dans une zone rurale qui est desservie par peu de voies de communications. Si une route est détruite par un séisme, les distances à couvrir pour atteindre la zone sinistrée seront très importantes. Si deux routes deviennent impraticables, l’accès sera pratiquement impossible en voiture.
Un scientifique du YVO a déclaré : «Le point positif est que Yellowstone est l’une des régions au monde où la sismicité est la mieux surveillée.» Plus de 40 stations enregistrent en permanence les mouvements de la Terre dans la région de Yellowstone et communiquent les données au Service des Parcs Nationaux. Le problème est que les stations sismiques ne peuvent qu’indiquer l’intensité des séismes; elles ne peuvent pas les prévoir! Néanmoins, les stations sismiques montrent que les séismes ont tendance apparaître dans certaines zones plutôt que dans d’autres. De plus, en se référant aux événements du passé, les scientifiques peuvent évaluer une probabilité de séisme au cours d’une certaine période.
Les séismes de Yellowstone peuvent avoir deux causes principales: le système volcanique, qui exerce une pression sur la croûte terrestre, et le système tectonique qui est le résultat, dans la région, d’une zone d’étirement active de la croûte d’est en ouest.
Outre le risque d’un séisme majeur avec glissement de terrain et dégâts causés aux bâtiments et aux ponts, il existe un autre danger dans le Parc. En effet, un puissant séisme pourrait déclencher une explosion hydrothermale, avec un mélange d’eau chaude, de boue et de roches susceptible de blesser des personnes se trouvant à proximité.
En dépit de ces différents risques, il ne faut pas que les touristes craignent un événement géologique majeur durant leur séjour à Yellowstone. Les puissants séismes ou les grandes éruptions volcaniques sont des événements qui ne se produisent pas fréquemment. Comme l’a dit un scientifique du YVO: «On court beaucoup plus de risques sur la route pour venir à Yellowstone que pendant un séjour dans le Parc. ».
Source: USA Today.

———————————————-

A recent article in the newspaper USA Today reminded us that the risk of a super eruption is not the only one in Yellowstone National Park. One should not forget the risk of a major earthquake in the area. According to the scientist-in-charge at the Yellowstone Volcano Observatory (YVO), “this is an underappreciated hazard in the Yellowstone area. There can and there will be in the future magnitude-7 earthquakes.”

On average, Yellowstone experiences 1,500 to 2,500 earthquakes a year, most of them so small they can’t be felt. But large quakes have occurred in the not-too-distant past. On August 17th, 1959, an M 7.3 earthquake rocked the Park, killing 28 people when a landslide rushed through a campground. More than 80 million tons of rock fell, blocking a river and forming a lake, aptly named Earthquake Lake which can still be seen today. The event remains the largest historical earthquake in the Intermountain West, a region between the Rocky Mountains to the east and the Cascade Range and Sierra Nevada to the west.

The threat of an earthquake of a similar magnitude happening again is more likely than even a minor eruption of Yellowstone’s super volcano. However, unlike a volcano, large earthquakes don’t show warning signs. They are likely to occur, but we can’t say when.

The hazards posed by a large earthquake today would be greater than what happened nearly 60 years ago due to a higher influx of visitors, especially in the summer. More than 4 million people visit Yellowstone every year, with peak visitation in July and August. Besides, Yellowstone sits in a rural area with few roads. If one road is destroyed by the quake, it creates a huge detour. If two roads become impassable, sometimes you can’t even get there by car.

A YVO scientist said that “the good thing is that Yellowstone is one of the best seismically monitored regions in the world.” More than 40 seismic stations continuously record the Earth’s movements in and around the Yellowstone region and report back to the National Park Service. The problem is that the seismic stations can just reveal the magnitude of the earthquakes; they can’t predict them! A positive point is that the seismic stations show that earthquakes tend to cluster in areas. Given what happened in the past, scientists can give a probability of having an earthquake over the next amount of time.

The Yellowstone earthquakes can have two main contributors: the volcanic system, which puts stress on the crust, and the tectonic system, which is represented in the region by an area of active stretching of the crust from east to west.

In addition to a major quake causing landslides and damaging buildings and bridges, there is another hazard: It could trigger a hydrothermal explosion, a mixture of hot water, mud and rocks that could injure people if they happened to be nearby.

Regardless of the different hazards, visitors should not be on high alert for a geological event of any sort. Big earthquakes or large volcanic eruptions are highly unlikely events which do not happen frequently. As one YVO scientist pointed out: “You’re in much more danger driving to Yellowstone than during your visit in the Park.”

Source: USA Today.

Route détruite par le séisme de 1959 à Yellowstone (Crédit photo : USGS)