Nouvelle étude sur le panache mantellique de Yellowstone // New study on the Yellowstone mantle plume

Au cours des dernières années, plusieurs études ont été réalisées sur le panache mantellique qui alimente le super volcan de Yellowstone. Elles ont révélé que la source du panache est beaucoup plus à l’ouest que prévu. De nouvelles recherches publiées dans la dernière édition de Nature Geoscience révèlent que des scientifiques de l’Université du Texas à Austin ont cartographié la trajectoire précise suivie par ce panache magmatique depuis la surface de la Terre jusqu’à son origine dans le manteau inférieur. L’étude révèle que la source de chaleur qui alimente Yellowstone est un panache de forme cylindrique, de 345 kilomètres de large, qui trouve son origine à 2900 kilomètres de profondeur, à la verticale de la partie nord de la Péninsule de Basse Californie. Cela confirme ce que pensent depuis longtemps les géophysiciens et explique pourquoi le super volcan avec ses geysers, ses sources thermales, ses mares de boue et ses fumerolles est situé dans le nord-ouest du Wyoming.
Jusqu’à présent, les chercheurs avaient réussi à localiser le panache mantellique qui alimente le point chaud de Yellowstone jusqu’à environ 960 kilomètres de profondeur. La dernière étude s’appuie sur les techniques tomographiques existantes qui permettent de cartographier comment les ondes sismiques « S » traversent le manteau terrestre. Par exemple, ces ondes ralentissent lorsque elles rencontrent un point chaud, comme un panache magmatique.
Les chercheurs ont analysé les données de 71 séismes de magnitude 5 ou plus enregistrés dans le monde entier entre 2005 et 2012. Ces séismes font partie d’un ensemble de données fournies par le programme « USAArray » qui regroupe un réseau de 400 sismomètres à travers les États-Unis continentaux. Avant la création de l’USAArray, personne n’avait installé une telle densité de sismomètres sur une zone aussi vaste. Ce réseau a révolutionné notre compréhension de la Terre, du moins sur le continent nord-américain.
L’hypothèse de départ était que le panache mantellique de Yellowstone était probablement une structure plutôt verticale. En fait, les chercheurs ont trouvé que le panache était plus incliné que prévu, jusqu’à la frontière entre le Mexique et la Californie. A son point de départ, à la limite noyau-manteau, on estime que le panache a une température d’environ 590 à 815 degrés Celsius supérieure à celle du manteau environnant. Au fur et à mesure qu’il s’élève vers la surface, sa température s’abaisse et n’est plus que de 400 degrés Celsius supérieure à celle du manteau au moment où il se trouve à 1 000 kilomètres sous la surface de la Terre. Il contient alors de la roche à haute température, mais pas de matière en fusion ou liquide.
Source: Gillette News Record.

—————————————–

In recent years, several studies have been made about the mantle plume that feeds the Yellowstone super volcano. They revealed that the source of the plume was much farther west than expected. In a recent research published in the latest edition of Nature Geoscience, University of Texas at Austin scientists have mapped the precise route of this magma plume from the Earth’s surface all the way to its outer core. It reveals that the source of heat slowly swelling the Yellowstone Plateau is a 345-kilometre-wide cylindrical plume that originates 2,900 kilometres beneath the northern reaches of Baja California. The finding confirms geophysicists’ long time suspicions and explains why the super volcano with its geysers, hot springs, mud pots and fumaroles is located in northwest Wyoming.

Until now, researchers had been able to trace the magma plume feeding the Yellowstone hotspot down to only about 960 kilometres underground. The latest study relied on existing tomography techniques, mapping how seismic “S” waves from earthquakes pass through Earth’s mantle. When the waves reach a hotspot, like a magma plume, they slow down.

The researchers analysed data from 71 M 5 or larger earthquakes that were recorded all around the world between 2005 and 2012. Those quakes were part of the “USAArray” dataset which sweeps a network of 400 seismometers across the continental United States. Before the USAArray was set up, nobody had ever put so many seismometers with such a density over such a large an area. It revolutionized our understanding of the Earth, at least in the North American continent.

The original hypothesis was that the Yellowstone mantle plume would be a rather vertical structure. Actually, the researchers found it was tilted more than they expected, going as far as the Mexico-California border. Where it originates, at the core-mantle boundary, the plume is estimated to be about 590 to 815 degrees Celsius warmer than the surrounding mantle. The structure is pulled to the surface by its buoyancy, and as it rises it loses its temperature, running only 400 degrees warmer than the mantle by the time it’s 1,000 kilometres away from the Earth’s surface. Its content is hot rock, not molten or liquid material.

Source: Gillette News Record.

Imperial Geyser à Yellowstone (Photo: C. Grandpey)

Sommes-nous prêts à affronter la prochaine super éruption? // Are we ready to face the next super eruption ?

Je termine généralement ma conférence «Volcans et risques volcaniques» en disant que ce que je crains le plus, c’est l’éruption d’un «super volcan» comme le Taupo en Nouvelle-Zélande, le Toba en Indonésie ou le Yellowstone aux États-Unis. S’agissant de Yellowstone, j’explique que les volumineux nuages ​​de cendre produits par l’éruption causeraient de très sérieux dégâts aux Grandes Plaines qui sont le grenier des États-Unis. Ils affecteraient aussi profondément les communications. Notre société basée sur Internet serait certainement en grande difficulté si une telle situation se produisait. Je suis d’accord avec les scientifiques qui disent que le monde doit faire davantage d’efforts pour se préparer à la prochaine méga éruption volcanique.
Le tsunami dévastateur dans l’Océan Indien en 2004 et le séisme de Tohoku au Japon en 2011 sont des exemples de graves catastrophes naturelles. Cependant, le monde moderne n’a pas eu à faire face à une véritable catastrophe volcanique depuis au moins 1815, lorsque l’éruption du Tambora en Indonésie a tué des dizaines de milliers de personnes et provoqué une «année sans été» en Europe et en Amérique du Nord. De telles éruptions majeures atteignent le niveau 7 ou plus sur l’Indice d’Explosivité Volcanique (VEI) qui présente 8 échelons.
Il faut garder à l’esprit que la prochaine éruption de VEI-7 pourrait survenir au cours de notre vie et nous ne savons pas prévoir les éruptions. Même si nous en étions capables, je ne suis pas certain que nous soyons prêts à affronter de tels super événements
Un article publié par trois chercheurs américains au début du mois de mars 2018 dans Geosphere examine les conséquences potentielles d’une éruption de VEI-7. Les trois scientifiques ont analysé l’éruption de VEI-5 du Mont St Helens en 1980, et l’éruption de VEI-6 du Pinatubo en 1991. Ces événements ont tué des dizaines, voire des centaines de personnes, et occasionné des perturbations à des régions entières. Le Pinatubo a même envoyé assez de SO2 dans la stratosphère pour provoquer une baisse des températures sur la planète.
Une éruption de VEI-7 aurait des conséquences bien différentes. En 1257, une éruption de VEI-7 en Indonésie a probablement refroidi suffisamment la planète pour provoquer un Petit âge glaciaire. Le problème est que la prochaine super éruption aura lieu dans un environnement bien différent de celui du 13ème siècle. Aujourd’hui, l’agriculture, les systèmes de santé, le monde de la finance et d’autres secteurs de la vie moderne sont beaucoup plus interconnectés à l’échelle mondiale qu’ils ne l’étaient il y a quelques décennies. Il suffit de voir ce qui s’est passé en 2010 lors de l’éruption d’Eyjafjallajökull en Islande. L’éruption qui n’avait qu’un VEI-3 a paralysé le trafic aérien européen pendant plusieurs jours à cause des nuages ​​de cendre émis par le volcan. L’événement a causé des pertes économiques estimées à 5 milliards de dollars.
En conséquence, il serait souhaitable que les chercheurs commencent à anticiper une éruption de VEI-7 en étudiant ses effets potentiels sur les liaisons de communication. Par exemple, il faudrait savoir comment l’humidité atmosphérique et les cendres volcaniques peuvent interférer avec les signaux GPS. Il faudrait aussi faire des études afin de mieux comprendre comment de grandes quantités de magma s’accumulent et provoquent des éruptions. Cela permettrait de mieux prévoir où le prochain événement de VEI-7 est susceptible de se produire.
Les chercheurs possèdent déjà une longue liste de volcans capables de déclencher une éruption de VEI-7. Comme je l’ai écrit plus haut, ces volcans comprennent le Taupo en Nouvelle-Zélande, site de la dernière éruption du VEI-8 il y a 26 500 ans, et le Mont Damavand, situé à seulement 50 kilomètres de Téhéran.
Même s’il existe actuellement une faible probabilité de voir une super éruption survenir dans le court terme, si un tel événement devait se produire, les gens se tourneraient vers les scientifiques, les gestionnaires des services d’urgences, les gouvernements et d’autres entités et s’attendraient à ce qu’ils soient prêts à y faire face.
Source: D’après un article publié dans Nature.

——————————————

I usually end my conference « Volcanoes and volcanic risks” with the conclusion that what I fear most is an eruption of a ‘super volcano’ like Taupo in New Zealand, Toba in Indonesia, or Yellowstone in the United States. As far as Yellowstone is concerned, I explain that the massive ash clouds produced by the eruption would cause very serious damage to the Great Plains which are the granary of the U.S. They would also deeply affect communications. Our society based on the Internet would certainly be at a loss if such a situation occurred.  I agree with the scientists who say that the world needs to do more to prepare for the next huge volcanic eruption.

The devastating Indian Ocean tsunami of 2004 and the Tohoku earthquake in Japan in 2011 highlighted some of the worst-case scenarios for natural disasters. However, humanity has not had to deal with a cataclysmic volcanic disaster since at least 1815, when the eruption of Tambora in Indonesia killed tens of thousands of people and led to a ‘year without a summer’ in Europe and North America. Such powerful eruptions rank at 7 or more on the Volcanic Explosivity Index (VEI), which goes to 8.

We have to admit that the next VEI-7 eruption could occur within our lifetime, but we are not yet able to predict future eruptions. Even if we did, I am not sure we are ready to face super events

A paper published by three American researchers in early March 2018 in Geosphere explores the potential consequences of the next VEI-7 eruption.  All three have researched the VEI-5 eruption of Mount St Helens in Washington state in 1980, and the VEI-6 eruption of Mount Pinatubo in the Philippines in 1991. Those events killed dozens to hundreds of people and disrupted entire regions. Pinatubo even spewed enough SO2 into the stratosphere to cause global cooling.

A VEI-7 eruption would be of an entirely different scale. In 1257, a VEI-7 eruption in Indonesia probably cooled the planet down enough to kick off the Little Ice Age. The problem is the next super eruption will take place in quite a different environment. Today, agriculture, health care, financial systems and other aspects of modern life are much more globally interconnected than they were just a few decades ago. It suffices to see what happened in 2010 with the eruption of Eyjafjallajökull in Iceland. The eruption that ranked at just VEI 3 grounded European air traffic for days because of the ash clouds emitted by the volcano. The event caused an estimated 5 billion US dollars in economic losses.

As a consequence, researchers should start to prepare for a VEI-7 eruption by studying potential effects on crucial communications links such as how atmospheric moisture and volcanic ash can interfere with GPS signals. Others could work to improve their understanding of how large amounts of magma accumulate and erupt, helping scientists to forecast where the next VEI-7 event might occur.

The researchers already have a long list of candidate volcanoes that might be capable of a VEI-7 blast. As I put it before, they include Taupo in New Zealand, site of the world’s last VEI-8 eruption 26,500 years ago, and Iran’s Mount Damavand, which lies just 50 kilometres from Tehran.

Even if there is currently a low probability of a super eruption in the short term, when it occurs people will look to scientists, emergency managers, governments and other entities and expect them to be prepared.

Source : After an article published in Nature.

Yellowstone fait partie des super volcans de la planète (Photo: C. Grandpey)

Yellowstone: Un nouvel essaim sismique affole les médias // New seismic swarm drives the media wild

Chaque fois qu’une activité sismique inhabituelle est enregistrée à Yellowstone, les médias – surtout les tabloïds britanniques – se demandent si une super éruption ne va pas se produire, avec toutes les catastrophes imaginables dans son sillage. Ainsi, le Daily Express rappelle à ses lecteurs que « si le volcan du Wyoming devait entrer en éruption, on estime que 87 000 personnes seraient immédiatement tuées et que les deux tiers des États-Unis deviendraient immédiatement inhabitables. La grande quantité de cendre rejetée dans l’atmosphère bloquerait la lumière du soleil et affecterait directement la vie sur Terre en provoquant un ‘hiver nucléaire’. L’éruption pourrait être 6 000 fois plus puissante que celle du Mont St Helens dans l’Etat de Washington en 1980 ; elle a tué 57 personnes et déposé de la cendre dans 11 Etats différents ainsi que dans cinq provinces canadiennes. Si le volcan [de Yellowstone] explosait, il se produirait un changement climatique car le volcan enverrait d’importantes quantités de dioxyde de soufre dans l’atmosphère, susceptibles de former un aérosol qui réfléchirait et absorberait la lumière du soleil. »
Un essaim de plus de 200 séismes a effectivement été enregistré dans le Parc National de Yellowstone en février 2018, mais – comme pour les précédents événements du même type – les géologues de l’Observatoire (YVO) insistent sur le fait que cela ne signifie pas qu’une éruption va se produire. L’USGS indique que les 200 événements sismiques ont débuté le 8 février et ont duré jusqu’au 15 février dans une zone située à environ 13 kilomètres au nord-est de West Yellowstone.
Même si l’essaim était plus important que la sismicité habituelle dans le Parc, il n’annonce pas forcément, non plus, un séisme majeur. Il correspond à l’activité sismique fréquemment observée à Yellowstone. Par exemple, un essaim encore plus significatif a fait frémir la région entre juin et septembre 2017. Les géologues pensent que l’essaim actuel pourrait être la suite de cet événement antérieur.

Certains scientifiques pensent toutefois que le risque d’un séisme majeur est sous-estimé à Yellowstone. Outre le tremblement de terre meurtrier de 1959 avec une magnitude de M 7,3 et 28 victimes, un séisme de magnitude M 6.1 a frappé la région de Yellowstone en 1975. Les gens ont tendance à redouter une super éruption, qui semble peu probable à court ou moyen terme, et ils oublient que l’on pourrait enregistrer beaucoup plus souvent des séismes de magnitude M 7.0 ou plus dans la région.
Sources: YVO, Science en direct, Gillette News Record, The Daily Express.

En cliquant sur ce lien, vous verrez des images des dégâts provoqués par le séisme de 1959 :

https://youtu.be/R1wSmqXH44s

  ———————————————

Each time some unusual seismic activity is recorded at Yellowstone and the media – mostly the British tabloids – wonder whether a super eruption will not occur, with all the disasters in its wake. The Daily Express reminds its readers that “if the Wyoming volcano were to erupt, an estimated 87,000 people would be killed immediately and two-thirds of the USA would immediately be made uninhabitable. The large spew of ash into the atmosphere would block out sunlight and directly affect life beneath it creating a “nuclear winter”. The massive eruption could be a staggering 6,000 times as powerful as the one from Washington’s Mount St Helens in 1980 which killed 57 people and deposited ash in 11 different states and five Canadian provinces. If the volcano exploded, a climate shift would ensue as the volcano would spew massive amounts of sulphur dioxide into the atmosphere, which can form a sulphur aerosol that reflects and absorbs sunlight.”

A swarm of more than 200 earthquakes recently struck Yellowstone National Park in February 2018, but – like the previous events of this sort – the geologists at the Yellowstone Volcano Observatory (YVO) insist that does not mean a super eruption is coming anytime soon. USGS indicates that the 200 seismic events began on February 8th and lasted until February 15th in an area about 13 kilometres northeast of West Yellowstone,

However, even though the swarm was more significant than the usual seismicity in the Park, it is not a sign of a major earthquake. It corresponds to the seismic activity frequently observed at Yellowstone. For instance, an even bigger swarm shook the area between June and September of 2017. Geologists suggest that the current swarm may be the continuation of that earlier swarm.

Some scientists think the possibility of a large earthquake is an underappreciated risk at Yellowstone. Aside from the deadly, damaging 1959 Hebgen Lake earthquake with an M 7.3 magnitude and 28 casualties, an M 6.1 quake struck the Yellowstone region in 1975. People tend to focus on the possibility of a super eruption, which is unlikely to occur in the short or even medium term, whereas M 7.0 earthquakes could happen comparatively more often.

Sources : YVO, Live Science, Gillette News Record, The Daily Express.

By clicking on this link, you will see images of the damage caused by the 1959 earthquake:

https://youtu.be/R1wSmqXH44s

Photos: C. Grandpey

 

Chroniques de la caldeira de Yellowstone // The Yellowstone Caldera Chronicles

Le 1er janvier 2018, une nouvelle rubrique hebdomadaire, à l’image du «Volcano Watch» du HVO à Hawaii, a été lancée par des scientifiques du Yellowstone Volcano Observatory (YVO). Cette nouvelle rubrique, intitulée « Yellowstone Caldera Chronicles », est publiée chaque lundi sur la page d’accueil du site web du YVO (https://volcanoes.usgs.gov/observatories/yvo/)

Le dernier article, publié le 12 février 2018, s’intitule « Un récent » hoquet « de déformation du Norris Geyser Basin« .
Le « hoquet » en question concerne un récent mouvement du sol autour du Norris Geyser Basin, l’une des zones des plus chaudes du Parc. Cette déformation est un bon indicateur de l’activité à l’intérieur des systèmes magmatiques et hydrothermaux de Yellowstone. En décembre 2017, les données de déformation ont indiqué que le Norris Geyser Basin avait connu un «hoquet» – autrement dit une brusque variation de déformation – probablement en raison de modifications des fluides hydrothermaux dans le sous-sol.
La déformation en surface est contrôlée par de nombreux types d’instruments, avec des extensomètres, des inclinomètres et des stations GPS. À Yellowstone, une quinzaine de stations GPS ont été disposées dans le Parc, et beaucoup d’autres sont situées dans la région environnante. Ces instruments suivent les variations de niveau de la région dans les moindres détails. Depuis 2015, les stations GPS dans la caldeira indiquaient une subsidence, tandis que les stations implantées à proximité du Norris Geyser Basin montraient un soulèvement de cette zone. Cette subsidence et ce soulèvement étaient toutefois faibles, d’environ 2,5 centimètres par an.
Au début du mois de décembre 2017, cependant, le profil du Norris Geyser Basin a changé lorsque la station GPS (NRWY) située le plus près du site a soudainement commencé à enregistrer une subsidence. Au cours des deux ou trois semaines suivantes, cette station s’est abaissée d’environ 2 cm. À la fin du mois de décembre, la subsidence était terminée et le soulèvement avait repris.
Ce n’est pas la première fois qu’une variation soudaine de déformation se produit dans le Norris Geyser Basin. Déjà fin 2013, la région avait commencé à se soulever rapidement, avec une élévation de 5 cm de la station NRWY en seulement quelques mois. Le soulèvement s’est brusquement transformé en affaissement vers le 30 mars 2014, le jour même où un séisme de magnitude M 4,8 secouait la région, l’événement le plus significatif enregistré à Yellowstone depuis 1980. À la fin de l’année 2014, l’affaissement à Norris avait retrouvé un niveau normal. Les scientifiques pensent que l’épisode soudain de soulèvement a été causé par l’accumulation de fluides hydrothermaux sous la région, et que le séisme a représenté la rupture d’un blocage. Après cette rupture, les fluides ont pu s’évacuer du système et la surface s’est affaissée.
Il est possible que l’affaissement observé en décembre 2017 soit dû un processus similaire. Le soulèvement a pu être causé par une accumulation de fluides hydrothermaux derrière un point de blocage dans le sous-sol. Ce blocage s’est rompu et a permis à certains fluides de s’écouler, ce qui a entraîné la subsidence, mais la situation s’est ensuite rétablie à la fin du mois et le soulèvement a repris. Contrairement à l’épisode de 2014, cependant, il n’y a pas eu de séisme significatif dans la région de Norris au moment de l’inversion de déformation.
Malgré le récent «hoquet» observé dans le Norris Geyser Basin, la déformation globale de la caldeira n’a pas changé. Les données GPS montrent que la subsidence se poursuit à la même vitesse depuis 2015. L’événement observé à Norris n’est pas le signe annonciateur d’une possible éruption ; il reflète la nature dynamique et en constante évolution du système hydrothermal de Yellowstone.
Source: Yellowstone.Volcano Observatory.

————————————–

On January 1st, 2018, a new weekly column inspired by HVO’s “Volcano Watch” was launched by scientists of the Yellowstone Volcano Observatory (YVO). This new column, entitled the “Yellowstone Caldera Chronicles,” is posted each Monday on the homepage of YVO’s website (https://volcanoes.usgs.gov/observatories/yvo/).

The latest article, released on February 12th 2018, is entitled “A recent « hiccup » in deformation of the Norris Geyser Basin.
The “hiccup” concerns a recent change in ground movement around the Norris Geyser Basin. This deformation is one of the primary indicators of activity within Yellowstone’s magmatic and hydrothermal systems. In December, deformation data indicate that the Norris Geyser Basin experienced a « hiccup, » probably due to changes in hydrothermal fluids in the subsurface.

Surface deformation can be monitored by many types of instruments, including borehole strainmeters, borehole tiltmeters and GPS stations. At Yellowstone, about 15 GPS stations are operating within the National Park, and many more are located in the surrounding region. These instruments track the ups and downs of the region in great detail. Since 2015, GPS stations in the caldera have indicated a subsidence, while stations near the Norris Geyser Basin have shown an uplift of that area. Rates of subsidence and uplift have been small, about 2.5 centimetres per year.

In early December, however, the pattern at Norris changed as the GPS station (NRWY) located closest to the geyser basin suddenly began to record subsidence. Over the next 2-3 weeks, that station subsided by about 2 cm. By the end of December, the subsidence had stopped, and uplift resumed.

This is not the first time a sudden change in deformation has occurred at Norris. In late 2013, the area began uplifting rapidly, accumulating 5 cm at the NRWY GPS station after just a few months. The uplift abruptly switched to subsidence on about March 30th, 2014, the same day of a M 4.8 earthquake in the area, the largest earthquake to have occurred in Yellowstone since 1980. By the end of 2014, the subsidence had returned Norris to its previous levels. Scientists believe that the sudden episode of uplift was caused by accumulation of hydrothermal fluids beneath the region, and that the earthquake represented the rupturing of a blockage. After the rupture, the fluids were able to drain from the system, and the surface subsided.

It is possible that the December 2017 subsidence represents a similar process. The uplift could be caused by hydrothermal fluids accumulating behind a blockage in the subsurface. This blockage was breached and allowed some fluids to drain, resulting in the subsidence, but then reestablished itself by the end of the month, and uplift resumed. Unlike the 2014 episode, however, there were no significant earthquakes in the Norris area at the time of the change in deformation.

Despite the recent « hiccup » at Norris, overall deformation of the caldera did not change. GPS data show that subsidence there continued at the same rates as have been measured since 2015. And the activity is not a signal of a potential eruption, but rather reflects the dynamic and ever-changing nature of Yellowstone’s hydrothermal system.

Source : Yellowstone Volcano Observatory.

Plan de visite du Norris Geyser Basin (Source: National Park Service)

Photos: C. Grandpey