Forte inflation et risque d’éruption sur le Kanlaon (Philippines) // High inflation and risk of eruption on Kanlaon (Philippines)

Les instruments qui surveillent la déformation du sol sur le Kanlaon enregistrent une forte inflation sur le flanc Est du volcan depuis le 10 janvier 2025. Les mesures montrent une augmentation soudaine du soulèvement dans cette zone et indiquent une hausse de la pression dans la partie supérieure du conduit magmatique à une altitude de 1 056 m. Cette situation correspond à celle observée avant l’éruption du 9 décembre 2024. Selon le PHIVOLCS, les mouvements du sol reflètent l’activité au sein du système volcanique tout en mettant en évidence un conduit magmatique actif à faible profondeur.
Les mesures de SO2 du 10 janvier atteignaient en moyenne 5 763 tonnes/jour, ce qui correspond aux émissions moyennes depuis l’éruption du 3 juin 2024, mais une baisse significative à 2 029 tonnes/jour a été enregistrée le 9 janvier. Le PHIVOLCS a observé des émissions semblables avant les éruptions passées, y compris l’événement de décembre 2024.
L’Institut rappelle au public que le niveau d’alerte 3 est maintenu sur le Kanlaon. « Il existe actuellement un fort risque d’éruptions explosives soudaines susceptibles de mettre en danger les zones habitées qui sont exposées à des risques volcaniques potentiellement mortels. » Le public est invité à rester à l’écart de la zone de danger de 6 km de rayon autour du volcan.
Source : PHIVOLCS.

Les mesures de déformation à 1 056 m d’altitude sur le flanc Est montrent une hausse très nette du soulèvement de la zone depuis le 10 janvier 2025 , comme on peut le voir dans l’encadré en pointillé rouge. (Source : PHIVOLCS)

————————————————–

Ground deformation monitoring instruments on Kanlaon have recorded sharp inflation in the volcano’s eastern flank since January 10th, 2025. The measurements revealed a sudden tilt increase and indicated pressurization within the upper magma conduit at an elevation of 1 056 m. The observation aligns with similar patterns observed before the eruption on December 9th, 2024. According to PHIVOLCS, the ground movements reflect activity within the volcanic system while pointing to an active shallow magma conduit.

SO2 measurements on January 10th averaged 5 763 tonnes/day, close to average emissions since the June 3rd, 2024 eruption, but a significant drop to 2 029 tonnes/day was recorded on January 9th.  PHIVOLCS noted that similar emissions preceded past eruptions including the December 2024 event.

The Institute reminds the public that public that Alert Level 3 is raised over Kanlaon Volcano. “There is presently an increased chance for sudden explosive eruptions to occur and endanger communities at risk with life-threatening volcanic hazards.” The public is urged to stay clear of the 6 km radius danger zone around the volcano.

Yellowstone (1) : le passé du super volcan // Yellowstone (1) : the past of the super volcano

Dans le dernier épisode de ses Yellowstone Caldera Chronicles, l’Observatoire Volcanologique de Yellowstone explique au public à quoi ressemblait Yellowstone avant que l’activité volcanique recouvre d’immenses étendues d’épaisses coulées de lave et de cendres.
Pour ce faire, les géologues ont examiné les zones bordant la région de Yellowstone, les chaînes de montagnes, les types de roches et les failles qui composent des secteurs comme la Chaîne Teton et Jackson Hole, et comme le chaînon Gallatin (Gallantin Range) et la Paradise Valley.
Comme je l’ai expliqué dans un article précédent, il y a environ 4 à 7 millions d’années, le point chaud de Yellowstone se trouvait sous le sud-est de l’Idaho où il alimentait les éruptions du champ volcanique Heise. Plusieurs grandes caldeiras ont été formées par des explosions majeures qui ont répandu des cendres sur le paysage jusqu’à Jackson Hole et la zone qui est aujourd’hui Yellowstone.
Le paysage prévolcanique de Yellowstone était principalement constitué de zones de haute altitude et il n’y avait pas de bassin comme c’est le cas aujourd’hui. Au lieu de cela, des chaînes de montagnes s’étendaient principalement du nord-nord-ouest au sud-sud-est. Les chaînes de montagnes Gallatin et Madison actuelles au nord étaient probablement reliées à la chaîne Teton et à d’autres montagnes au sud, formant des ensembles de chaînes continues qui étaient toutes délimitées par de grandes failles. Des chaînes délimitées par des failles comme celles-ci sont courantes dans tout l’ouest des États-Unis aujourd’hui. Elles font partie de la province Basin and Range, qui s’étend de l’est de la Californie à l’ouest du Wyoming et du Montana.
On peut voir les preuves de ces anciennes chaînes de montagnes continues dans les cartes montrant l’agencement des séismes et des bouches éruptives. Les cartes montrent plusieurs bandes de sismicité du nord-nord-ouest au sud-sud-est sous la caldeira de Yellowstone. Elles délimitent peut-être les failles encore existantes qui contrôlaient les chaînes de montagnes qui ont été détruites lorsque de grandes éruptions explosives ont commencé dans la région de Yellowstone.

Carte des séismes à Yellowstone entre 1973 et 2023. On remarquera dans la partie sud du Parc national de Yellowstone une série de bandes sismiques orientées nord-nord-ouest / sud-sud-est. Il se peut que ces alignements reflètent des failles associées à des chaînes de montagnes qui ont été détruites lors de la formation de la caldeira de Yellowstone il y a 631 000 ans.

Il existe également plusieurs alignements de points d’émission de lave rhyolitique orientés plus ou moins du nord-nord-ouest au sud-sud-est, actifs après la formation de la caldeira de Yellowstone, en particulier il y a environ 160 000 à 70 000 ans. Tout comme les schémas montrant les séismes, les alignements de bouches éruptives pourraient également avoir été contrôlés par les failles préexistantes associées aux chaînes de montagnes détruites.

Carte géologique de la caldeira de Yellowstone montrant les emplacements et les âges des éruptions de rhyolite les plus récentes. On remarquera deux séries d’alignements de bouches éruptives nord-nord-ouest / sud-sud-est. Il se peut qu’ils reflètent des orientations de failles sous-jacentes associées à des chaînes de montagnes qui ont disparu lors de la formation de la caldeira de Yellowstone il y a environ 631 000 ans.

Étant donné qu’il y avait des montagnes dans toute la région de Yellowstone avant les grandes explosions, l’érosion a été un processus déterminant. Les hautes chaînes de montagnes ont été progressivement érodées et les sédiments qui se sont détachés de ces sommets se sont accumulés dans les vallées à la base des chaînes. Certains de ces sédiments existent encore aujourd’hui; ils sont recouverts d’épaisses couvertures de cendres provenant des éruptions qui ont formé la caldeira de Yellowstone.
Les premières éruptions volcaniques de la région de Yellowstone ont commencé il y a au moins 2,2 millions d’années. La première des trois grandes éruptions ayant donné naissance à une caldeira s’est produite il y a 2,08 millions d’années; elle a répandu d’épaisses couches de cendres sur une très grande surface et modifié considérablement le paysage.
L’Observatoire Volcanologique de Yellowstone indique qu’aujourd’hui, de nombreux visiteurs du Parc national approchent la région par le nord, le sud ou l’ouest. Les géologues conseillent à ces personnes de prendre un moment pour apprécier le paysage qu’elles traversent. Ces zones illustrent aujourd’hui à quoi ressemblait Yellowstone il y a quelques millions d’années.

Voici le lien menant à l’article. Vous y trouverez les cartes avec une résolution plus élevée :
https://www.usgs.gov/observatories/yvo/news/what-did-yellowstone-look-it-became-wonderland

Source : USGS / YVO.

——————————————————–

In the latest episode of its Yellowstone Caldera Chronicles, the Yellowstone Volcano Observatory explains the public what Yellowstone looked like before volcanic activity covered huge swaths of land with thick lava and ash flows.

The geologists have looked at the characteristics of the areas bordering the Yellowstone region, at the mountain ranges, rock types, and faults that make up areas like the Tetons and Jackson Hole, and like the Gallatins and Paradise Valley.

As I explained in a previous post, during about 4–7  million years ago, the Yellowstone hotspot was located under southeastern Idaho, feeding eruptions occurring from the Heise volcanic field. That sequence included multiple large calderas that formed via major explosions, spreading ash across the landscape, including Jackson Hole and the area that is now Yellowstone.

The pre-volcanic Yellowstone landscape was mostly made of high-elevation areas and there was no basin present like there is today.  Instead, mountain ranges ran mostly north-northwest to south-southeast. Today’s Gallatin and Madison ranges in the north were probably connected to the Tetons and other mountains to the south, forming sets of continuous ranges that were all bounded by large faults.  Fault-bounded ranges like these are common throughout the western USA today. They are part of the Basin and Range province, which extends from eastern California to western Wyoming and Montana.

We can see the evidence for these formerly continuous mountain ranges in patterns of earthquakes and eruptive vents.  Seismicity maps show several north-northwest to south-southeast bands of earthquakes beneath Yellowstone Caldera, possibly delineating the still-existing faults that controlled the mountain ranges that were blown apart when large explosive eruptions began in the Yellowstone region. (see map above)

There are also several roughly north-northwest to south-southeast alignments of vents for rhyolite lava flows that erupted after Yellowstone Caldera formed, especially during about 160,000 to 70,000 years ago.  Just like patterns of earthquakes, the vent alignments might also have been controlled by the preexisting faults associated with the destroyed mountain ranges. (see map above)

Because there were mountains throughout the Yellowstone region before the big explosions, erosion was an important process.  The high mountain ranges were gradually being ground down, and sediments eroded from these peaks accumulated in valleys at the bases of the ranges.  Some of these sediments still exist today, capped by thick blankets of ash from caldera-forming eruptions of the Yellowstone system.

The first volcanic eruptions from the Yellowstone region began at least 2.2 million years ago, and the first of three great caldera-forming eruptions occurred 2.08 million years ago, spreading thick ash over a very large area and dramatically altering the landscape.

The Yellowstone Volcano Observatory indicates that today, many visitors to Yellowstone National Park approach the area from the north, south, or west. Geologists advise these persons to take a moment to appreciate the landscape they are traversing.  Those areas today exemplify what Yellowstone used to look like a few million years ago.

Here is the link leading to the article. You will find the maps with a higher resolution :

https://www.usgs.gov/observatories/yvo/news/what-did-yellowstone-look-it-became-wonderland

Source : USGS / YVO.