Les inclinomètres du Kilauea (Hawaï) // Tiltmeters at Kilauea Volcano (Hawaii)

Au cours de ma conférence « Volcans et risques volcaniques », j’explique que le regretté Maurice Krafft comparait un volcan sur le point d’entrer en éruption à une personne malade ou blessée. Une telle personne a de la fièvre et des frissons et généralement mauvaise haleine. La plaie enfle également. Il en va de même avec un volcan sur le point d’entrer en éruption : la température des gaz augmente ; on enregistre une hausse de la sismicité ; la composition des gaz change et un gonflement de l’édifice est détecté par les instruments.
Ce dernier paramètre est développé par l’Observatoire Volcanologique d’Hawaï (HVO) dans un nouvel épisode de la série « Volcano Watch ».
Au cours du siècle dernier, les avancées technologiques ont considérablement amélioré la surveillance volcanique. Une innovation clé a été l’introduction d’inclinomètres (aussi appelés tiltmètres) de forage, des appareils capables de mesurer d’infimes variations d’inclinaison de la surface du volcan.
Les inclinomètres de forage sont utilisés par les scientifiques du HVO depuis le début des années 1970 et sont devenus un élément essentiel de la surveillance volcanique. Un instrument plus ancien appelé « inclinomètre à tube d’eau » était utilisé dans les années 1950.
Aujourd’hui, le réseau d’inclinomètres moderne sur l’île d’Hawaï fait partie d’un ensemble plus vaste d’outils de surveillance incluant des stations sismiques, des récepteurs GPS, des capteurs de gaz et des images fournies par les webcams et les satellites. Tous ces outils permettent aux scientifiques de surveiller les changements de comportement des volcans susceptibles de provoquer des éruptions.
Les inclinomètres sont des instruments sensibles conçus pour détecter de très légères variations de déformation du sol. Ils sont installés autour des volcans pour surveiller l’évolution de la surface de la Terre causée par le déplacement du magma sous terre. Ces mouvements précèdent souvent les éruptions car le magma exerce une pression sur la roche environnante, tout en provoquant un gonflement ou un léger déplacement de la surface.
Les inclinomètres actuels fonctionnent avec une grande précision. Ils peuvent détecter des variations de seulement cinq nanoradians, soit moins d’un millionième de degré. Ce niveau de précision rend les inclinomètres indispensables pour suivre les changements subtils de l’activité volcanique et fournir des alertes précoces aux scientifiques.
Une vingtaine d’inclinomètres de forage sont installés stratégiquement sur le Kilauea et le Mauna Loa, à des endroits clés des sommets et des caldeiras de ces volcans. Ces zones sont importantes car elles sont les plus susceptibles de subir une déformation importante du sol pendant les périodes d’activité volcanique et avant le début d’une éruption.
Ces inclinomètres fonctionnent en continu et génèrent un point de données toutes les 60 secondes. Ainsi, ils peuvent transmettre ces données en temps quasi réel au HVO. Elles sont essentielles pour la détection précoce de l’activité volcanique. Par exemple, au cours de son ascension vers la surface, le magma peut provoquer une inclinaison significative du sol qui est enregistrée par les inclinomètres. En analysant plusieurs ensembles de données, les scientifiques peuvent déterminer la zone où le magma se déplace et si une éruption est imminente.
Les inclinomètres de forage nécessitent un entretien de routine, notamment le changement des batteries et la mise à niveau de la télémétrie radio utilisée pour envoyer les données au HVO.

Maintenance d’un inclinomètre de forage au sommet du Kilauea (Crédit photo : HVO)

Chaque inclinomètre a également une plage d’inclinaison limitée sur laquelle il peut enregistrer la déformation avec précision. Les inclinomètres analogiques du HVO doivent être mis à niveau manuellement si la déformation dépasse 300 microradians. L’inclinomètre aura alors besoin d’un peu de temps pour « se stabiliser » avant que les données puissent être de nouveau utilisées quantitativement. À côté des appareils analogiques, des inclinomètres numériques peuvent être mis à niveau à distance sans interruption de la qualité des données.
Les inclinomètres sont particulièrement utiles pour suivre les changements au fur et à mesure que le sommet du Kilauea gonfle et se dégonfle (phases d’inflation et de déflation). Le réseau d’inclinomètres du Kilauea a aussi fourni des informations précieuses sur la migration du magma entre le sommet et la Middle East Rift Zone au cours des nombreuses intrusions qui ont conduit à la dernière éruption dans et près du Nāpau Crater du 15 au 20 septembre 2024.
Le Mauna Loa fait également l’objet d’une surveillance étroite par le réseau d’inclinomètres du HVO. Bien que moins actif que le Kilauea au cours des dernières décennies, le Mauna Loa est toujours susceptible de donner naissance à des éruptions dangereuses. Au cours des mois qui ont précédé et des heures qui ont suivi le début de l’éruption de 2022, les inclinomètres ont joué un rôle essentiel car ils ont permis aux scientifiques de suivre l’activité et la déformation de plus en plus importante du sommet.
Les inclinomètres sont donc un élément essentiel du réseau de surveillance volcanique à Hawaï. En détectant des changements subtils dans l’inclinaison du sol, ils fournissent des signaux d’alerte précoce et permettent aux scientifiques de mieux comprendre le comportement des volcans d’Hawaï.
Source : USGS / HVO.

 

Données d’inflation du Kilauea obtenues grâce aux inclinomètres installés dans la zone sommitale du volcan (Source : HVO).

——————————————–

I explain in my conference « Volcanoes and volcanic hazards » that the late Maurice Krafft used to compare a volcano about to erupt with a sick or wounded person. Such a person has a fever and chills and usually bad breath. The wound also swells. It is the same with a volcano about to erupt : gas temperature rises ; seismicity increases ; gas composition changes and an inflation of the edifice is detected by the instruments.

This last parameter is developed by the Hawaiian Volcano Observatoty (HVO) in a new « Volcano Watch » episode.

Over the past century, technological advancements have vastly improved volcano monitoring. One key innovation was the introduction of modern borehole tiltmeters, devices that measure very small changes in the inclination of the volcano’s surface.

Borehole tiltmeters have been used by the HVO scientists since the early 1970s and have since become an essential part of the volcano monitoring program. An older style of instrument called a “water tube tiltmeter” goes back even further to the 1950s.

Today the modern tiltmeter network on the Island of Hawaii forms part of a larger array of monitoring tools, including seismic stations, GPS receivers, gas sensors, and webcam/satellite imagery. Together, these tools help scientists keep a close eye on the changing behaviors at volcanoes that may lead to eruptions.

A tiltmeter is a sensitive instrument designed to detect very slight changes in deformation of the ground. They are installed around volcanoes to monitor changes in the Earth’s surface caused by magma moving underground. These movements often precede eruptions, as pressure from magma pushes against the surrounding rock, causing the surface to bulge or shift slightly.

Today’s tiltmeters work with high precision. They can detect changes as small as five nanoradians, or less than one millionth of a degree. This level of precision makes tiltmeters invaluable for tracking subtle changes in volcanic activity and providing early warnings to scientists.

More than a dozen borehole tiltmeters are strategically installed on Kilauea and Mauna Loa at key locations across the volcano summits and calderas. These areas are of particular interest because they are most likely to experience significant ground deformation during periods of volcanic unrest and before an eruption onset.
These tiltmeters operate continuously and produce one data point every 60 seconds, transmitting data in near real-time to HVO. This data is critical for early detection of volcanic activity. For example, when magma begins to rise toward the surface, it can cause noticeable tilting of the ground, which is recorded by the tiltmeters. By analyzing multiple monitoring datasets, scientists can determine where magma is moving and whether an eruption may be imminent.

Borehole tiltmeters need routine maintenance including changing batteries and upgrading the radio telemetry used to send the data back to HVO. Each tiltmeter also has a limited range of tilt over which it can accurately record deformation. For example, HVO analog tiltmeters need to be manually leveled in their boreholes if deformation exceeds 300 microradians. Then, the tiltmeter will need time to “settle” from the physical disturbance before the data can be used quantitively. Other digital tiltmeters can be leveled remotely with no interruption in data quality.

Tiltmeters have been particularly useful in tracking changes as Kilauea’s summit inflates and deflates. Kilauea’s tiltmeter network provided valuable information about magma moving from the summit to the Middle East Rift Zone during the several intrusions leading up to the most recent eruption in and near Nāpau Crater from September 15th to 20th, 2024.

Mauna Loa has also been under close surveillance by HVO’s tiltmeter network. Although less active than Kilauea in recent decades, Mauna Loa is still capable of producing hazardous eruptions. In the months leading up to and in the hours during the initial onset of the 2022 Mauna Loa eruption, tiltmeters played a critical role in helping scientists track unrest and heightened summit deformation.

Tiltmeters are a crucial component of the volcanic monitoring network in Hawaii. By detecting subtle changes in ground inclination, they provide early warning signals of volcanic unrest and help scientists to better understand the behavior of Hawaii’s dynamic volcanoes.

Source : USGS / HVO.

Douceur en novembre : agréable, oui mais…

Il est très agréable de pouvoir se promener en t-shirt et de déjeuner à la terrasse d’un restaurant limousin un 5 novembre. Je suis le premier à le reconnaître. J’ai connu un de ces moments agréables aux Sables d’Olonne où j’étais venu admirer les bateaux des 40 concurrents du Vendée Globe dont le départ sera donné le 10 novembre.

Un peu plus normal que dans le Limousin, les effets du réchauffement climatique se font ressentir à Nice (Alpes-Maritimes) où le thermomètre a avoisiné les 20°C le mardi 5 novembre, battant un record de chaleur.

Tempérant la joie des promeneurs sur la Promenade des Anglais, Météo-France prévient que Nice et la Côte d’Azur font partie des zones françaises qui seraient le plus touchées par le réchauffement climatique, avec 3 à 5 degrés de plus en moyenne d’ici 2100 et de très fortes pluies. « C’est typiquement l’endroit en France métropolitaine qui va être concerné par des épisodes méditerranéens plus intenses. »

Source: France Info.

Ces prévisions pessimistes confirment les propos du Premier Ministre le 25 octobre 2024, et auxquels la presse n’a pas, selon moi,  accordé suffisamment d’attention et d’importance.

Monsieur Barnier a déclaré que « la France doit anticiper une vie avec +2,7°C en 2050. Le précédent plan d’adaptation (2018-2022) prévoyait un réchauffement de 1,5°C à +2°C d’ici 2100 par rapport à l’ère pré-industrielle. Toutefois, au vu de l’accélération de la hausse des températures, les prévisions ont dû être corrigées. La France hexagonale se prépare désormais, d’ici à la fin du siècle, à un réchauffement de +4°C, à côté de +3°C en moyenne à l’échelle mondiale. Le calendrier de hausse de la température prévoit +2°C en 2030, et +2,7°C en 2050. Selon cette trajectoire de réchauffement climatique, les glaciers alpins situés en France auront disparu d’ici 2100. Le risque de sécheresse sera multiplié par trois à l’horizon 2030 par rapport aux années 1960, et multiplié par 4 d’ici 2100. »

La chaleur agréable de ce début novembre, tout en étant préoccupante d’un point de vue climatique, ne présente pas d’inquiétude en France pour les prochains mois car les abondantes précipitations au cours du printemps et de l’automne ont permis de recharger les nappes phréatiques et les réserves d’eau. Toutefois il ne faudrait pas que nous traversions un hiver et un printemps secs, car le problème de l’eau ne manquerait pas de se poser à nouveau. Cette crainte d’une pénurie fait partie des conséquences les plus alarmantes du réchauffement climatique.

La hausse des tempéraures continue de manière inexorable sur l’ensemble de la planète.