La musique du Kilauea (Hawaii) // Kilauea’s music (Hawaii)

Différentes sortes de perturbations peuvent affecter le réservoir magmatique ou le lac de lave au sommet du Kilauea : arrivée de poches de gaz, effondrements des parois du cratère dans le lac de lave, etc. Lorsqu’un réservoir magmatique ou un lac de lave est perturbé, le fluide qu’il contient peut réagir de diverses manières. Dans un lac de lave, comme celui qui existait de 2008 à 2018 dans le cratère de l’Halema’uma’u, ces mouvements de fluides peuvent parfois être observés sous forme d’ondulations ou de clapotis à la surface du lac.
Il est possible de détecter des mouvements de magma en profondeur en utilisant des sismomètres pour mesurer les vibrations du sol. Toutefois, les signaux sismiques générés par le mouvement du magma sont souvent différents des autres types de signaux sismiques. Comparé aux séismes conventionnels, le magma en mouvement génère habituellement des vibrations relativement lentes au moment où le sol monte et descend pendant un laps de temps de plusieurs secondes ou dizaines de secondes.
Pendant des décennies, les scientifiques ont interprété ces signaux sismiques comme des preuves de migration ou d’accumulation du magma en profondeur, susceptibles d’annoncer une éruption imminente. Ces dernières années, toutefois, ils ont acquis de nouvelles méthodes pour interpréter ces signaux sismiques et pour résoudre les propriétés des systèmes magmatiques.
Un réservoir magmatique ou un lac de lave vibrent plus fortement à certaines fréquences – les fréquences de résonance – qui dépendent de la géométrie du réservoir magmatique ou du lac de lave, mais aussi des propriétés du magma ou de la lave qui s’y trouve, comme la température et la teneur en gaz. Ces vibrations ressemblent à la façon dont les notes de musique produites par un instrument comme une flûte de pan sont liées à la forme de l’instrument et aux propriétés de l’air qu’il contient.
Si un magma ou une lave est très fluide, une seule perturbation peut faire résonner le corps magmatique pendant des dizaines de minutes (voir figure ci-dessous).
Les variations dans les fréquences de résonance peuvent indiquer des changements dans la quantité de gaz contenue dans le magma ou la lave, facteur important pour comprendre son potentiel éruptif. De plus, des fluctuations dans la durée de résonance peuvent indiquer des changements dans la température du magma ou de la lave, ce qui indique aux scientifiques une possible arrivée de magma juvénile à haute température.
Une telle résonance a permis de déterminer la géométrie du système magmatique sommital peu profond du Kilauea. Les scientifiques ont constaté que le conduit reliant le réservoir sommital peu profond au lac de lave dans le cratère de l’Halema’uma’u de 2008 à 2018 mesurait plus de 15 mètres de large. Cette résonance a également révélé la dynamique complexe du magma au cours de la dernière décennie, ce qui explique le niveau d’activité élevé du volcan Kilauea.
Source : HVO.
L’article ne précise pas si le Kilauea vibre ces jours-ci, mais l’activité dans le cratère de l’Halena’uma’u est relativement faible. La lave alterne apparitions et disparitions sur le plancher du cratère.

—————————————-

Different types of disturbances may affect Kilauea’s summit magma reservoir or the lava lake : rising gas pockets, the fall of wall rocks into a lava lake, and so on. When a body of magma or lava is disturbed, the fluid in it can respond in a variety of ways. In a lava lake, such as the one that existed from 2008–2018 in Halema‘uma‘u crater, these fluid motions can sometimes be observed as ripples or sloshing of the surface.

One can also detect deeper magma motion by using seismometers to measure ground vibrations. The seismic signals generated by magma motion are often distinct from other types of seismic signals. Compared to normal earthquakes, magma motion usually produces relatively slow vibrations, where the ground rises and falls over several seconds or tens of seconds.

For decades scientists have been interpreting these seismic signals as evidence of underground magma migration or accumulation, which can be used to look for signs that might indicate an impending eruption. In recent years, scientists have been learning new methods to use these seismic signals to resolve properties of underground magma systems.

Magma or lava bodies vibrate most strongly at certain frequencies – resonant frequencies – that depend on the body’s geometry and the properties of the magma or lava it contains, such as temperature and gas content. This is similar to how the musical notes produced by an instrument like a pan flute depend on the instrument’s shape and the properties of the air in it.

If a magma or lava is very fluid, then a single perturbation can cause the magma body to resonate for tens of minutes (see figure below).

Changes in the resonance frequencies can indicate changes in the amount of gas contained within the magma or lava, which is important for understanding its eruptive potential. Additionally, changes in the resonance duration can indicate changes in the magma or lava temperature, which tells scientists if fresh hot magma is being brought up from deeper in the earth.

Such resonance has helped to reveal Kilauea’s shallow summit magma system geometry, for example suggesting that the conduit connecting its shallow summit magma reservoir with the overlying lava lake in Halema‘uma‘u from 2008–2018 was more than 15 meters wide. It has also revealed complex magma dynamics over the past decade which inform the restless nature of Kilauea Volcano.

Source : HVO.

The article does not specify whether Kilauea is vibrating these days, but activity within Halena’uma’u Crater is quite low, with lava appearing or disappearing on the crater floor.

Le graphique du haut montre le tracé d’un séisme classique peu profond, de magnitude M 2,0 enregistré en 2013 à quelques kilomètres au sud du sommet du Kilauea.

Le tracé du bas montre un enregistrement sismique, effectué en 2013, de la résonance du magma lors de l’impact produit par un rocher qui s’était détaché d’une paroi du cratère de l’Halema’uma’u. On notera les différentes échelles de temps; le séisme classique n’a duré qu’une vingtaine de secondes alors que chaque cycle d’oscillation du magma dans le graphique du bas a duré 40 secondes et les vibrations ont continué pendant plus de 20 minutes.

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.