Le Kilauea sous haute surveillance // Kilauea volcano is fully monitored

drapeau francaisLes volcans ne connaissent pas la même gestion du temps que les humains. Ils ne prennent pas en compte la notion d’heures de travail et le besoin de sommeil. C’est la raison pour laquelle ils doivent être surveillés en permanence. Les techniques de surveillance ont beaucoup évolué au cours des dernières décennies et les méthodes du passé ont été remplacées par des ordinateurs.
Les alarmes sont utilisées depuis longtemps à l’Hawaiian Volcano Observatory (HVO). Au cours des premières phases de l’éruption du Kilauea le long de l’East Rift Zone en 1983, les scientifiques du HVO voulaient savoir exactement à quel moment la lave allait commencer à déborder du cratère du Pu’uO’o, un événement qui indique généralement l’apparition de fontaines de lave. A cette époque, le personnel du HVO devait dérouler une lourde et encombrante bobine de câble en cuivre à travers l’ouverture où la lave était censée s’échapper du cratère du Pu’uO’o. Grâce à ce câble, une tension constante était communiquée par radio au HVO, et quand les données fournies par ce câble étaient soudain interrompues, les scientifiques savaient que lave avait coupé le circuit.
Aujourd’hui, des moyens beaucoup plus élaborés sont utilisés pour déclencher les alarmes lorsque le comportement des volcans hawaïens se modifie. Les appels et autres sonneries téléphoniques automatisés ont été remplacés par des sms et des courriels.
Par exemple, le système Swarm Alarm du HVO enregistre chaque heure les séismes qui se produisent dans un certain secteur de la zone sommitale du Kilauea. Le système avertit automatiquement l’Observatoire si le nombre dépasse le seuil fixé par le sismologue de service. En effet, un essaim sismique inhabituel peut signaler un changement dans le système volcanique susceptible de déboucher sur une nouvelle émission de lave.
Un autre système d’alarme s’appuie sur des inclinomètres électroniques. Les variations  d’inclinaison de la pente de l’édifice volcanique ne sont pas inhabituelles car le volcan répond aux mouvements du magma dans les réservoirs superficiels. Toutefois, si des variations d’inclinaison significatives sont détectées, un programme informatique envoie un message d’alerte invitant les scientifiques à contrôler attentivement la situation.
Le HVO utilise des caméras thermiques qui surveillent le cratère Pu’uO’o. Ces caméras prennent des photos toutes les deux minutes et, si un point chaud remplit plus de cinq pour cent des images, un message texte est envoyé, accompagné d’une image. Lors de la réception d’un tel message, les scientifiques du HVO vérifient d’autres données (y compris des images plus récentes fournies par les webcams) pour voir si la lave remplit ou déborde du cratère.
Le HVO utilise également l’imagerie thermique fournit par le satellite GOES (Geostationary Operational Environmental Satellite) pour détecter les températures du sol anormalement élevées dans des secteurs autres que le sommet du Kilauea et le champ de lave du Pu’uO’o. Si de telles températures anormales sont repérées, un programme informatique envoie un message texte avec une image intégrée aux géologues du HVO afin que la situation puisse être étudiée.
Source: HVO.

 ———————————————

drapeau anglaisVolcanoes don’t keep time as humans do. They do not take into account the notion of regular working hours and the need for sleep. This is the reason why they need to be monitored permanently. Surveillance techniques have much changed over the past decades and the methods of the past have been replaced by computers.

For instance, alarms have long been used at the Hawaiian Volcano Observatory (HVO). During the early episodes of Kilauea’s ongoing East Rift Zone eruption, HVO scientists wanted to know exactly when lava began spilling out of the Pu‘u O’o crater, which usually indicated the onset of lava fountains. This was in 1983, years before the advent of webcams!  So, HVO staff had to use a heavy spool of copper cable over rugged lava flows and across the spillway where lava would first flow down the side of Pu’uO’o. Using this cable, a steady voltage was radioed back to HVO, and when readings from this electronic tripwire were suddenly interrupted, scientists knew lava had broken the circuit.

Today, far more sophisticated ways are used to trigger alarms when the status of Hawaiian active volcanoes changes. Automated phone calls, pages, and ringing bells have been replaced by texts and emails.

For example, HVO’s Swarm Alarm counts earthquakes occurring in a certain region of Kilauea’s summit area within the past hour. The system automatically notifies the Observatory’s monitoring group if the number surpasses the threshold set by HVO’s seismologist. Indeed, an unusual cluster of earthquakes could signal a change in the volcanic system that may lead to a new outbreak of lava.

Another alarm system monitors the slope of the ground using electronic tiltmeters. Slow changes in tilt are not unusual as the volcano adjusts in response to magma shifts within shallow reservoirs. However, if more rapid changes are detected, a computer program sends texts to notify us that it’s time to take a closer look at what else is happening.

HVO deploys thermal cameras that look into the Pu’uO’o crater. These cameras take fresh pictures every two minutes, and, if a hot spot fills more than five percent of the images, send a text message with an embedded image. Upon receiving such a message, HVO scientists check other data (including more recent webcam images) to see if lava is filling or overflowing the crater.

HVO also uses Geostationary Operational Environmental Satellite (GOES) thermal imagery to look for elevated ground temperatures in areas other than at Kilauea’s summit and on the Pu’uO’o lava flow field. If elevated temperatures are found, a computer program sends a text message with an embedded image to HVO geologists so that the situation can be further investigated.

Source : HVO.

GOES-program_large

Un scientifique de l’USGS programme un émetteur satelliatire GOES sur un site de contrôle des émissions de CO2.

(Photo: USGS)