Le forage profond est terminé en Islande // Deep drilling is now complete in Iceland

drapeau-francaisDans deux notes publiées le 28 octobre et le 16 décembre 2016, j’ai expliqué que les Islandais avait entamé un projet de forage profond (IDDP) qui devait descendre à 5 kilomètres de profondeur dans un ancien champ de lave de la Péninsule de Reykjanes, dans le sud-ouest de l’Islande. Le forage avait commencé le 12 août 2016.

Dans ma note du 16 décembre, j’expliquais également que le but du projet était d’atteindre 5 km car à cette profondeur la roche fondue se mélange à l’eau. Grâce à la chaleur et la pression extrêmes, l’eau devient de la « vapeur supercritique » qui possède une énorme énergie. L’idée est que lorsque la vapeur remontera à la surface et sera transformée en électricité, elle créera jusqu’à 10 fois plus d’énergie que les puits géothermiques classiques.
Un article de la BBC nous informe aujourd’hui que la phase de forage est terminée. Les géologues ont foré jusqu’à 4 659 mètres, créant ainsi le plus profond puits de forage volcanique au monde. Ils ont enregistré des températures de 427°C, mais ils pensent que le puits sera plus chaud une fois qu’il sera élargi dans les prochains mois. L’équipe de l’IDDP a également prélevé 21 mètres de carottes qui seront analysées.

Au cours des prochains mois, l’étape suivante consistera à injecter de l’eau froide dans le puits, ce qui l’élargira. L’équipe attendra ensuite que le puits monte en chaleur. Les ingénieurs pensent que la température pourrait dépasser 500°C, ce qui ferait de ce forage le plus chaud jamais réalisé. Ensuite, l’équipe verra si le puits génère autant d’énergie que prévu.
Source: BBC News.

———————————–

drapeau-anglaisIn two notes released on October 28th and December 16th 2016, I explained that a rig was drilling 5 kilometres into the old lava flows of the Reykjanes Peninsula, in south-west Iceland.It was part of the Iceland Deep Drilling Project (IDDP). The drilling had begun on August 12th.

In the December 16th note, I also explained that the final goal of the project was to reach 5 km down because at this depth, molten rock mixes with water. With the extreme heat and pressure, the water becomes « supercritical vapour » and holds a huge amount of energy. The idea is that when the steam is brought back to the surface and converted into electricity, it will create up to 10 times more energy as conventional geothermal wells.

A BBC news article now informs us that the drilling phase is now complete. Geologists have penetrated 4,659m down, creating the deepest-ever volcanic borehole. They have recorded temperatures of 427°C, but believe the hole will get hotter when they widen it in the coming months. The IDDP team also collected 21 metres of cores, which will now be analysed.

Over the coming months, the next stage will be to pump cold water into the well, which will open it up. Then the team will wait for the well to warm up again. They think the temperatures could exceed 500°C, which would make this the hottest borehole ever drilled. Then the team will see whether it generates as much energy as they hope.

Source : BBC News.

islande-geothermie

Islande: Le paradis de la géothermie (Photo: C. Grandpey)

Islande : Recherche de l’énergie à grande profondeur (suite) // Iceland : Looking for very deep energy (continued)

drapeau-francaisDans une note publiée le 28 octobre 2016, j’ai expliqué que les Islandais avait entamé un Projet de Forage Profond – Iceland Deep Drilling Project (IDDP) – prévu pour descendre jusqu’à 5 kilomètres de profondeur dans d’anciennes coulées de lave sur la Péninsule de Reykjanes, dans le sud-ouest de l’Islande. Le forage avait commencé le 12 août. À la fin de l’année 2016, le trépan devrait avoir creusé le trou le plus chaud au monde, avec des températures entre 400 et 1000°C. La BBC nous indique aujourd’hui que le forage est maintenant descendu à près de 4.500 mètres et devrait atteindre 5000 m d’ici la fin de l’année, profondeur où la température devrait dépasser 500°C.
Lorsque le forage aura atteint 5 km, l’équipe de forage s’attend à trouver des roches fondues mélangées à de l’eau. Toutefois, avec la chaleur extrême et la pression énorme rencontrées à cette profondeur, l’eau se transforme en « vapeur supercritique » qui n’est ni un liquide ni un gaz, mais détient beaucoup plus d’énergie que l’un ou l’autre. C’est cette vapeur supercritique que l’équipe de forage veut faire remonter à la surface pour la convertir en électricité. Les propriétés particulières de la vapeur supercritique permettraient de produire jusqu’à 10 fois plus d’énergie que la vapeur issue des puits géothermiques conventionnels.
Si le forage est un succès, cela voudra dire qu’à l’avenir il suffira de forer moins de puits pour produire la même quantité d’énergie. Cela signifiera également qu’une surface moindre sera impactée, avec moins de conséquences négatives pour l’environnement, et un coût inférieur. Cependant, la partie n’est pas gagnée d’avance et il faut être prudent. En effet, en 2009, un forage très profond a été effectué dans un autre site volcanique islandais. A 2100 m de profondeur, le trépan est entré en contact avec un réservoir magmatique  peu profond et la plateforme de forage a été détruite. Que le projet actuel soit un succès ou non, il permettra de mieux savoir à quoi ressemble l’intérieur d’un volcan.
Source: BBC News.

L’article de la BBC s’accompagne d’une vidéo visible à cette adresse :

http://www.bbc.com/news/science-environment-38296251

———————————

drapeau-anglaisIn a note released on October 28th 2016, I explained that a rig was drilling 5 kilometres into the old lava flows in Reykjanes, at the south-west corner of Iceland. The drilling had begun on August 12th. By the end of the year, the Iceland Deep Drilling Project (IDDP) hoped to have created the hottest hole in the world, hitting temperatures anywhere between 400 and 1000 °C. The BBC is now informing us that the drilling has now descended nearly 4,500m and is expected to reach 5km down, where temperatures are expected to exceed 500°C, by the end of the year.

When the drill gets to 5 km, the drilling team expects to find molten rock mixed with water. But with the extreme heat and immense pressure found at this depth, the water becomes what is known as « supercritical steam ». It is neither a liquid nor a gas, but it holds far more energy than either. And it is this supercritical steam that the team wants to bring back up to the surface to convert into electricity. They believe its special properties mean it could produce up to 10 times as much energy as the steam from conventional geothermal wells.

If this works, in the future fewer wells would need to be drilled to produce the same amount of energy. This would also mean that less surface would be touched, with less environmental impact and lower costs. However, it might also fail and there is a good reason to be cautious. In 2009, a very deep drilling was attempted into another volcanic site. But at 2,100m, they accidentally hit a shallow reservoir of magma and the drill was destroyed. Whether it is a success or not, the project will help to know what the interior of a volcano looks like.

Source: BBC News.

A video accompanies the BBC article :

http://www.bbc.com/news/science-environment-38296251

islande-geothermie

La géothermie a toujours joué un rôle important en Islande.

(Photo: C. Grandpey)

Islande: A la recherche de l’énergie à grande profondeur // Iceland: Looking for very deep energy

drapeau-francaisUne opération de forage jusqu’à 5 kilomètres de profondeur est actuellement en cours au cœur des anciennes coulées de lave de la péninsule de Reykjanes, dans le sud-ouest de l’Islande. Le forage, qui pénètre une extension terrestre de la dorsale médio-atlantique, a débuté le 12 août 2016.
À la fin de cette année, l’Iceland Deep Drilling Project (IDDP) devrait permettre de réaliser le puits de forage le plus chaud au monde, avec des températures atteignant entre 400 et 1000°C. Le magma issu des profondeurs rencontre et chauffe l’eau de mer qui s’est infiltrée sous le plancher océanique. Le forage pourrait rencontrer l’équivalent terrestre des «fumeurs noirs», sources chaudes le long de la dorsale, qui sont saturées en minéraux tels que l’or, l’argent et le lithium.
A 5 km de profondeur, les pressions sont élevées, plus de 200 fois le niveau atmosphérique. Selon les sociétés productrices d’énergie qui sont derrière le projet, l’eau apparaîtra sous la forme de « vapeur supercritique. » [NB : On parle de fluide supercritique lorsqu’un fluide est chauffé au-delà de sa température critique et lorsqu’il est comprimé au-dessus de sa pression critique]. La vapeur supercritique n’est ni liquide ni gaz et elle détient beaucoup plus d’énergie thermique que l’un ou l’autre.
Un puits capable de capter une telle vapeur pourrait avoir une capacité énergétique de 50 mégawatts, contre 5 MW pour un puits géothermique classique. Cela signifie que quelque 50 000 foyers pourraient être alimentés, contre 5000 seulement à partir d’un seul puits.
Le puits actuel est le second foré dans le cadre de l’IDDP. Le précédent, sur le site géothermique du Krafla, dans le nord-est de l’Islande, a atteint tout à fait par hasard le magma à un peu plus de 2 km de profondeur en 2009. Le magma à très haute température a été brièvement utilisé pour chauffer l’eau froide envoyé dans le puits afin de déterminer la quantité d’énergie qui pourrait être générée et pour se rendre compte si la technologie était opérationnelle. Ce puits de forage n’a jamais fourni d’énergie au réseau islandais, mais jusqu’à sa fermeture pour des problèmes de corrosion, il a été le puits géothermique le plus puissant jamais bien percé, avec une production de 30 MW.
L’Islande tire déjà la totalité de son énergie de combustibles non fossiles, mais ses centrales géothermiques jouent un  rôle secondaire par rapport à ses grandes centrales hydroélectriques qui produisent les trois quarts de l’électricité du pays. Cela pourrait changer. En effet, si la vapeur supercritique peut être obtenue grâce à des forages profonds, la production d’énergie atteindra un ordre de grandeur bien différent. A une plus grande échelle, les techniques en cours de développement en Islande pourraient être adoptées par d’autres pays à travers le monde.
Source: The New Scientist.

————————————–

drapeau-anglaisA rig is currently drilling 5 kilometres into the rugged landscape of old lava flows in Reykjanes, at the south-west corner of Iceland. Drilling began on August 12th.

By the end of the year, the Iceland Deep Drilling Project (IDDP) hopes to have created the hottest hole in the world, hitting temperatures anywhere between 400 and 1000 °C. The drilling will penetrate a landward extension of the Mid-Atlantic Ridge. At that depth, magma that moves from below through volcanic activity meets and heats seawater that has penetrated beneath the ocean bed. The drilling could find the landward equivalent of “black smokers”, hot underwater springs along the ridge saturated with minerals such as gold, silver and lithium.

At that depth, pressures are high, more than 200 times atmospheric levels.  The consortium of energy companies behind the project expects the water to be in the form of “supercritical steam”, which is neither liquid nor gas and holds much more heat energy than either.

A well that can successfully tap into such steam could have an energy capacity of 50 megawatts, compared to the 5 MW of a typical geothermal well. This would mean some 50,000 homes could be powered, versus 5,000 from a single well.

It will be the IDDP’s second deep well. The first, in the Krafla geothermal field of north-east Iceland, unexpectedly struck magma at just over 2 km down in 2009. The hot magma was briefly used to heat cold water sent down the well to test how much energy could be generated and that the technology worked. It never supplied power to the Icelandic grid, but until it was shut down after corrosion problems, it was the most powerful geothermal well ever drilled, generating 30 MW.

Iceland’s electricity is already entirely powered by non-fossil-fuel sources. But its string of geothermal power plants plays a second role compared to its large hydroelectric power stations, which generate three-quarters of the country’s electricity. That could change. If supercritical steam can be obtained in deep boreholes, it will make an order of magnitude difference to the amount of geothermal energy the wells can produce. There could be global benefits, too, if the techniques being developed in Iceland are adopted elsewhere.

Source:  The New Scientist.

islande-geothermie

Centrale géothermique dans le nord-est de l’Islande (Photo: C. Grandpey)