Impact de l’éruption du Hunga Tonga-Hunga Ha’apai sur la couche d’ozone // Impact of the Hunga Tonga-Hunga Ha’apai eruption on the ozone layer

Une étude publiée dans la revue Science le 20 octobre 2023 nous apprend que l’éruption du Hunga Tonga-Hunga Ha’apai du 15 janvier 2022 a entraîné une perte soudaine et importante d’ozone dans la stratosphère. Les chercheurs ont découvert que l’éruption avait injecté une quantité sans précédent de vapeur d’eau dans cette même stratosphère, ce qui a provoqué des réactions chimiques en chaîne et entraîné un appauvrissement rapide de la couche d’ozone.
L’événement a en effet entraîné en seulement une semaine une réduction de 5 % de la couche d’ozone au-dessus du sud-ouest tropical du Pacifique et de l’Océan Indien. Une telle baisse en pourcentage est remarquable, étant donné que le trou dans la couche d’ozone au-dessus de l’Antarctique connaît un appauvrissement allant jusqu’à 60 % de septembre à novembre chaque année.
Comme je l’ai écrit précédemment, l’éruption a atteint des altitudes incroyables, jusqu’à 55 km au-dessus du niveau de la mer et elle a injecté une quantité sans précédent de vapeur d’eau dans la stratosphère. De ce fait, l’éruption a représenté 10 % de la charge moyenne totale de vapeur d’eau dans la stratosphère à l’échelle de la planète. En utilisant un ensemble de mesures effectuées par des ballons et des données satellitaires, les chercheurs ont pu identifier les effets de l’éruption sur divers composants chimiques atmosphériques, notamment les compisés de brome et de chlore, l’oxyde d’azote (NO) et, plus important encore, l’ozone (O3).
Les données ont révélé que l’augmentation de la vapeur d’eau dans la stratosphère a joué un rôle crucial dans la chaîne d’événements qui a suivi. Cette vapeur d’eau a entraîné une humidité relative plus élevée et un refroidissement radiatif de la stratosphère. Cela a à ensuite permis une série de réactions chimiques à la surface des aérosols volcaniques. Ces réactions ont activé des composés chlorés tels que le monoxyde de chlore (ClO) à partir du chlore inactif (chlorure d’hydrogène, HCl). La diminution du chlorure d’hydrogène de 0,4 partie par milliard en volume (ppbv) et l’augmentation du ClO de 0,4 ppbv ont fourni des preuves irréfutables de l’activation du chlore, ce qui a finalement conduit à la destruction rapide des molécules d’ozone. Au final, on peut dire que l’injection volcanique de vapeur d’eau (H2O), de dioxyde de soufre (SO2) et de chlorure d’hydrogène (HCl), ont favorisé une conversion rapide des composés chlorés en molécule de chlore à la surface des aérosols volcaniques hydratés et une diminution de l’ozone dans la stratosphère.
L’étude met l’accent sur l’interaction complexe entre les émissions volcaniques et la chimie atmosphérique. Elle offre également des informations précieuses sur la manière dont les événements météorologiques extrêmes peuvent affecter notre compréhension de l’appauvrissement rapide de la couche d’ozone dans certains panaches volcaniques. Les caractéristiques uniques de l’éruption du Hunga Tonga, telles que son altitude d’injection élevée et les grandes quantités de vapeur d’eau, ont fourni aux chercheurs des données qui font progresser considérablement notre compréhension de ces processus complexes. Les résultats ont également des implications plus larges pour la compréhension des effets atmosphériques liés aux réchauffement climatique.

On peut voir sur le site de l’Observatoire des Sciences de l’Université de la Réunion (OSU-Réunion) un schéma illustrant le processus de destruction rapide de l’ozone à la suite de l’éruption du Hunga Tonga

L’encadré en haut à gauche de l’image montre que le profil d’ozone du 22 janvier 2022 (ligne noire) contraste avec la climatologie de La Réunion (ligne rouge), montrant un déclin notable.

——————————————-

A study published in Science on October 20th, 2023 informs us that the January 15th, 2022 Hunga Tonga–Hunga Ha’apai eruption led to a sudden and significant loss of stratospheric ozone. Researchers found that the eruption injected an unprecedented amount of water vapor into the stratosphere, causing chemical reactions that resulted in rapid ozone depletion.

The event led to a 5% reduction of ozone above the tropical southwestern Pacific and Indian Ocean within just one week. Such a percentage drop is noteworthy, given that the Antarctic ozone hole experiences up to a 60% depletion from September to November each year.

As I put it before, the eruption reached altitudes of up to 55 km above sea level and injected an unparalleled amount of water vapor into the stratosphere. Specifically, the eruption accounted for 10% of the total global mean stratospheric water vapor burden. Utilizing a combination of balloon measurements and satellite data, the researchers were able to pinpoint the effects of the eruption on various atmospheric chemical components, including bromine and chlorine species, nitrogen oxide (NO), and, most significantly, ozone (O3).

Data revealed that the increase in stratospheric water vapor played a crucial role in the ensuing chain of events. The water vapor led to higher relative humidity and radiative cooling in the stratosphere. This, in turn, enabled a series of chemical reactions on the surfaces of volcanic aerosols. These reactions activated chlorine species such as chlorine monoxide (ClO) from inactive chlorine (hydrogen chloride, HCl). The decrease in hydrogen chloride by 0.4 ppbv and the increase in ClO by 0.4 ppbv provided compelling evidence for chlorine activation, which ultimately led to the rapid destruction of ozone molecules. Ultimately, one can say that the volcanic injection of water vapor (H2O), sulfur dioxide (SO2) and hydrogen chloride (HCl), favored a rapid conversion of chlorinated compounds into chlorine molecules. the surface of hydrated volcanic aerosols and a decrease in ozone in the stratosphere.

The study emphasizes the complex interplay between volcanic emissions and atmospheric chemistry. It also offers valuable insights into how extreme weather events can affect our understanding of rapid ozone depletion in certain volcanic plumes. The Hunga Tonga eruption’s unique features, such as its high injection altitude and the large amounts of water vapor, have provided researchers with invaluable data that significantly advances our understanding of these intricate processes. The findings also have broader implications for understanding the potential atmospheric effects of climate change.

Le trou dans la couche d’ozone diminue // The hole in the ozone layer is shrinking

On peut lire ces jours-ci dans toute la presse de nombreux articles nous informant que le trou dans la couche d’ozone rétrécit, ce qui est une bonne nouvelle car notre planète reçoit ainsi moins de lumière ultraviolette nocive.
Le site internet du programme d’observation Copernicus donne plus de détails. Les données du Copernicus Atmosphere Monitoring Service (CAMS)service de surveillance de l’atmosphère – sur la réduction du trou d’ozone en Antarctique en 2022 mettent en évidence un comportement inhabituel de ce phénomène. Non seulement la réduction du trou dans la couche d’ozone a pris plus de temps que d’habitude, mais elle a été relativement importante. Ceci est particulièrement remarquable car ce comportement n’est pas propre à l’année 2022 ; il est semblable à ce que l’on a observé en 2020 et 2021 et diffère de ce qui avait été observé au cours des 40 années précédentes.
Le trou d’ozone antarctique commence généralement à s’agrandir au printemps dans l’hémisphère sud (fin septembre) et commence à se réduire en octobre, avant de se refermer généralement en novembre. Néanmoins, les données CAMS des trois dernières années montrent un comportement différent : pendant cette période, le trou d’ozone est resté plus important que d’habitude tout au long du mois de novembre et s’est terminé à la fin du mois de décembre.
S’agissant des causes de ce nouveau comportement, Copernicus explique que plusieurs facteurs influencent l’étendue et la durée du trou d’ozone chaque année, en particulier la force du vortex polaire et les températures dans la stratosphère. Les trois dernières années ont été marquées par un puissant vortex et de basses températures, ce qui a conduit à des épisodes consécutifs de trous importants et de longue durée dans la couche d’ozone. Il existe un lien possible avec le changement climatique, qui tend à refroidir la stratosphère. Il est tout à fait surprenant d’observer consécutivement trois trous inhabituels dans la couche d’ozone.
La date de la fermeture du trou dans la couche d’ozone en 2020 et 2021 a eu lieu respectivement le 28 et le 23 décembre, et la situation en 2022 a été identique.
Les trois derniers trous dans la couche d’ozone ont non seulement été exceptionnellement longs en durée, mais ils ont également eu une taille relativement importante. Au cours de ces trois années, le trou a dépassé 15 millions de km2 – la taille de l’Antarctique – pendant la majeure partie du mois de novembre.
Malgré la taille relativement importante de ces récents trous dans la couche d’ozone, il existe des signes persistants que la situation est en voie d’amélioration. Grâce à la mise en œuvre du Protocole de Montréal, les concentrations de substances nocives pour la couche d’ozone, les CFC en particulier, ont diminué lentement mais régulièrement depuis la fin des années 1990. On peut s’attendre à ce que dans 50 ans leurs concentrations dans la stratosphère soient revenues aux niveaux préindustriels et qu’il n’y ait plus de trous dans la couche d’ozone, quelles que soient les conditions de vortex polaire et de température dans la stratosphère.

—————————————-

One can read these days in the news papers numeroius articles informing us that the hole in the ozone layer is shrinking, which is good news as less danderous ultraviolet light is reaching Earth’s surface.

The website of the Copernicus Earth observation programme gives more information about this phenomenon. Data from the Copernicus Atmosphere Monitoring Service (CAMS) on the closing of the 2022 Antarctic ozone hole highlights some unusual behaviour. Not only did the closure of the ozone hole take longer than usual, but it was relatively large. This is particularly remarkable given that this behaviour is not unique to this year, but it is similar to ozone holes of 2020 and 2021 and differs from what had been observed in the previous 40 years.

The Antarctic ozone hole usually starts opening during the Southern Hemisphere spring (in late September) and begins to decline during October, before typically coming to an end during November. Nonetheless, the CAMS data from the last three years show a different behaviour: during this time, the ozone hole has remained larger than usual throughout November and coming to an end well into December. .

As for the causes of this new behaviour ? Copernicus explains that there are several factors influencing the extent and duration of the ozone hole each year, particularly the strength of the Polar vortex and the temperatures in the stratosphere. The last three years have been marked by strong vortices and low temperatures, which has led to consecutive large and long-lasting ozone hole episodes. There is a possible connection with climate change, which tends to cool the stratosphere. It is quite unexpected though to see three unusual ozone holes in a row.

The date of the ozone hole closure in 2020 and 2021 was December 28th and December 23rd respectively, and 2022 was similar. The last three ozone holes have been not only exceptionally persistent, but also had a relatively large extension. During these three years the ozone hole has been above the 15 million km2 (similar to the size of Antarctica) during most of November.

However, despite these recent fairly large ozone holes, there are consistent signs of improvement of the ozone layer. Thanks to the implementation of the Montreal Protocol, the concentrations of Ozone Depleting Substances (ODS) have been slowly but steadily declining since the late nineties. It is expected that in 50 years their concentrations in the stratosphere will have returned to the pre-industrial levels and ozone holes will no longer be experienced regardless of Polar vortex and temperature conditions.

Evolution du trou dans la couche d’ozone sous le 60ème parallèle depuis 1979 (Source : CAMS)

Expédition MOSAiC : Le trou dans la couche d’ozone arctique // The hole in the Arctic ozone layer

Dans trois notes publiés le 12 mai, le 4 juin et le 22 août 2020, j’expliquais que l’expédition MOSAiC ((Multidisciplinary drifting Observatory for the Study of Arctic Climate) était la plus importante jamais mise en place dans l’Arctique. Le nom reflète la complexité et la diversité de cette expédition. Le projet MOSAiC, doté d’un budget total supérieur à 140 millions d’euros, a été conçu par un consortium international d’institutions de recherche polaire de premier plan, avec à sa tête l’Institut Alfred Wegener et le Centre Helmholtz pour la recherche polaire et marine.
Le 20 septembre 2019, le vaisseau amiral Polarstern (Etoile Polaire) de l’Institut Alfred Wegener a levé l’ancre dans le port de Tromsø en Norvège pour rejoindre le cœur de l’Océan Arctique et y faire des mesures scientifiques. La mission impliquait 600 chercheurs de dix-sept pays. Une fois dans l’Océan Arctique, le Polarstern s’est laissé emprisonner par les glaces et s’est laissé dériver vers le sud.
En plus des 50 membres d’équipage, une cinquantaine de scientifiques ont mené des recherches sur 5 principaux domaines d’intérêt (atmosphère, océan, banquise, écosystème, biogéochimie). L’équipe scientifique était renouvelée tous les deux mois.
L’expédition MOSAiC a récemment attiré l’attention sur l’ampleur de l’appauvrissement de la couche d’ozone au niveau de l’Arctique. Même après l’interdiction par toutes les nations (Protocole de Montréal en 1987) des substances nocives pour la couche d’ozone, le plus grand trou jamais observé dans la couche d’ozone a été détecté au-dessus de l’Arctique à une altitude d’une vingtaine de kilomètres.
Selon un chercheur allemand de l’Université de Potsdam, « la couche d’ozone ne s’améliore pas. Au contraire, les choses s’aggravent dans l’Arctique. Nous comprenons maintenant que c’est parce que les décomposeurs du gaz sont toujours présents dans l’atmosphère. Le changement climatique les rend plus agressifs : c’est une mauvaise nouvelle pour l’avenir de la couche d’ozone dans l’Arctique. » [NDLR : il faut noter, comme le rappelait souvent le regretté Haroun Tazieff, que le trou dans la couche d’ozone existait déjà avant l’utilisation des CFC].
Néanmoins, le chercheur allemand voit quelques raisons d’espérer. Il a déclaré : « Nous avons vu que sous la glace, la mer atteint un point de congélation à une profondeur de 14 mètres en hiver. Il existe donc une base saine pour la formation de glace pendant cette saison. Nous pensons qu’il est toujours possible de sauver la glace, à condition d’arrêter le réchauffement climatique. La glace réagit de manière très linéaire au réchauffement, et si nous arrêtons le réchauffement, sa fonte s’arrêtera. Cela met une grande responsabilité sur nos épaules. Nous sommes la dernière génération en mesure de sauver la glace de mer dans l’Arctique. »
Source : Iceland Review.

—————————————–

In three posts published on My 12th, June 4th and August 22nd, 2020, I explained that the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition was the largest ever set up in the Arctic. The name mirrors the complexity and diversity of this expedition. The MOSAiC project with a total budget exceeding € 140 Million has been designed by an international consortium of leading polar research institutions, led by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI).

On September 20th, 2019, the Alfred Wegener Institute’s flagship Polarstern (or Polar Star) weighed anchor in the port of Tromsø in Norway to reach the heart of the Arctic Ocean for scientific measurements. The mission involved 600 researchers from seventeen countries. Once in the Arctic Ocean, the Polarstern got caught in the ice and started drifting south.
In addition to the 50 crew members, around fifty scientists carried out research on 5 main areas of interest (atmosphere, ocean, sea ice, ecosystem, biogeochemistry). The scientific team was renewed every two months.
The research expedition has recently shed new light on the extent to which the Arctic ozone layer has been depleted. Even after the international banning of ozone-harming substances (Montreal Protocol in 1987), the largest hole ever found in the ozone was detected over the Arctic at an altitude of some 20 km.

According to a German researcher at the University of Potsdam, « the ozone layer is not improving. Things are getting worse in the Arctic. Now we understand that it is because the decomposers from the gas are still present in the atmosphere. Climate change makes them more aggressive: it’s bad news for the future of the ozone layer in the Arctic. » [Editor’s note : it should be noted, as the late Haroun Tazieff often reminded it, that the hole in the ozone layer already existed before the use of CFCs].

Nevertheless, the researcher sees some reason for hope. He said : « We saw that under the ice the sea reaches a freezing point down to a depth of 14 meters in the winter. There is a healthy base for winter ice formation, and we believe we are still in a position to save the ice if we stop global warming.The ice responds very linearly to warming, and if we stop the warming, the melting of the ice will stop. This puts a lot of responsibility on our shoulders. We are the last generation that can save the sea ice in the Arctic. »

Source: Iceland Review.

Le Polarstern (Source: Alfred Wegener Institute)

Toba (Sumatra / Indonésie) : Nouvelle approche de l’éruption // New approach to the eruption

Plusieurs études ont été faites à propos de la super éruption du Toba à Sumatra (Indonésie) il y a 75 000 ans. Les scientifiques ont estimé que l’événement a été 5 000 fois plus puissant que l’éruption du Mont St. Helens en 1980. L’éruption a provoqué un hiver volcanique de six à dix ans à l’échelle de la planète et probablement un épisode de refroidissement de 1 000 ans.

Dans un article publié le 27 février 2020, j’expliquais que dans les années 1990, plusieurs scientifiques pensaient que l’éruption avait été suffisamment puissante pour anéantir la plupart des premiers humains vivant à l’époque, ralentissant ainsi l’extension de l’humanité.

En 1993, la journaliste scientifique Ann Gibbons a expliqué qu’un goulot d’étranglement de la population s’est produit dans l’évolution de l’espèce humaine il y a environ 70 000 ans, et elle a avancé l’hypothèse selon laquelle cela était dû à l’éruption. Un géologue de l’Université de New York et un volcanologue de l’Université d’Hawaii sont allés dans le sens de cette hypothèse..

En 1998, la théorie du goulot d’étranglement a été confirmée par un anthropologue de l’Université de l’Illinois.

Selon une étude publiée en février 2020 dans la revue Nature Communications, la situation n’a peut-être pas été aussi désastreuse qu’on ne le pensait auparavant. En effet, il existe des preuves que l’Homo sapiens migrait avant, pendant et après l’éruption. Des chercheurs qui ont travaillé sur le site de Dhaba dans la vallée de la rivière Middle Son dans le centre de l’Inde ont découvert des preuves révélant que les humains ont occupé le site de manière continue au cours des 80 000 dernières années. La découverte d’outils en pierre a prouvé que l’Homo sapiens vivait en Asie plus tôt qu’on le pensait. Le fait que ces ensembles d’outils n’aient pas disparu au moment de la super éruption de Toba, ou aient changé de façon spectaculaire peu de temps après, démontre que les populations ont survécu à la prétendue catastrophe et ont continué à créer des outils pour modifier leur environnement.

Cependant, les auteurs de l’étude affirment cette situation n’a pas eu des effets durables. Par exemple, les humains qui ont survécu à cet événement ne se sont pas suffisamment développés au point de contribuer au pool génétique actuel. Ils ont probablement été confrontés à d’autres défis et à la période glaciaire qui a suivi l’éruption.

Une nouvelle étude publiée en 2021 par des chercheurs de l’Institut Max Planck de chimie et d’autres structures scientifiques apporte un éclairage nouveau sur les effets de l’éruption sur les populations.

Ces scientifiques confirment que le Toba a longtemps été présenté comme la cause du goulot d’étranglement de la population. Toutefois, les premières études portant sur les variables climatiques (températures et précipitations) n’ont fourni aucune preuve concrète d’un effet dévastateur sur l’humanité.

Les auteurs de la dernière étude insistent sur le rôle joué par le rayonnement ultraviolet (UV). Ils font remarquer que, sous les tropiques, le rayonnement UV proche de la surface est le facteur d’évolution le plus déterminant. Les grandes éruptions volcaniques émettent des gaz et des cendres. Cela crée une couche d’aérosols qui bloque la lumière du soleil dans la stratosphère et entraîne un refroidissement à la surface de la Terre. Cet «hiver volcanique» a de multiples conséquences, tels que des océans plus froids, des événements El-Niño plus longs, des mauvaises récoltes et des maladies.

En temps normal, la couche d’ozone empêche des niveaux élevés et nocifs de rayonnement UV d’atteindre la surface de la Terre. Lorsqu’un volcan libère de grandes quantités de SO2, le panache volcanique qui en résulte absorbe le rayonnement UV mais bloque la lumière du soleil. Cela limite la formation d’ozone, crée un trou dans la couche d’ozone et augmente la nocivité des UV.

L’équipe scientifique a examiné les niveaux de rayonnement UV après l’éruption du Toba à l’aide du modèle climatique ModelE développé par le Goddard Institute for Space Studies de la NASA pour simuler les effets possibles d’éruptions de puissances différentes.

Leur modèle montre que le nuage de SO2 émis par le Toba a fait chuter le niveau d’ozone de la planète dans des proportions allant jusqu’à 50 %. Ils ont également constaté que les effets sur l’ozone étaient significatifs, même dans des scénarios d’éruptions mineures.

Il semble indéniable que les risques induits par un rayonnement UV plus élevé sur la santé ont eu un impact sur la survie de la population. Les effets du rayonnement UV ont probablement été comparables aux conséquences d’une guerre nucléaire. Dans une telle situation, les rendements des cultures et la productivité marine chutent en raison des effets de stérilisation des UV. Sortir sans protection contre les UV provoque des lésions oculaires et des brûlures par le soleil en moins de 15 minutes. Au fil du temps, les cancers de la peau et les dégâts causés à l’ADN ont probablement entraîné une chute de la démographie.

Source : The Independent.

——————————————

Several studies have been made about the super eruption of Mt Toba  in Sumatra (Indonesia) 75,000 years ago. The explosive event was estimated to be 5,000 times more massive than the 1980 Mount St. Helens eruption. Researchers explained that rhe event caused a global volcanic winter of six to ten years and possibly a 1,000-year-long cooling episode.

In a post released on February 27th, 2020, I explained that in the 1990s, several scientists suspected the eruption had been large enough to wipe out a majority of early humans living at the time, slowing down the spread of humanity.

In 1993, science journalist Ann Gibbons explained that a population bottleneck occurred in human evolution about 70,000 years ago, and she suggested that this was caused by the eruption. A geologist of New York University and a volcanologist of the University of Hawaii supported her suggestion.

In 1998, the bottleneck theory was further developed by an anthropologist of the University of Illinois.

According to a study published in February 2020 in the journal Nature Communications shows that the situation may not have been as terrible as previously thought. Indeed, there is evidence that Homo sapiens were migrating before, during and after the eruption. Researchers investigating a site called Dhaba in Central India’s Middle Son River Valley uncovered evidence revealing that humans have occupied the site continuously for the last 80,000 years. The discovery of stone tools suggested that Homo sapiens were living in Asia earlier than expected. The fact that these toolkits did not disappear at the time of the Toba super-eruption, or change dramatically soon after, indicates that human populations survived the so-called catastrophe and continued to create tools to modify their environments.

However, the authors of the study say that this was not a lasting legacy. For example, the humans who survived this event did not thrive enough to the point that they contributed to the current gene pool. They likely suffered due to other challenges and the glacial period that followed the eruption.

A recent study published in 2021 by researchers at the Max Planck Institute for Chemistry and other scientific structures brings a new light to the effects of the eruption on the populations.

They explain that Toba has long been posited as a cause of the bottleneck, but initial investigations into the climate variables of temperature and precipitation provided no concrete evidence of a devastating effect on humankind. The authors of the study point out that, in the tropics, near-surface ultraviolet (UV) radiation is the driving evolutionary factor. Large volcanic eruptions emit gases and ash, which create a sunlight-blocking aerosol layer in the stratosphere, causing cooling at the Earth’s surface. This “volcanic winter” has multiple knock-on effects, such as cooler oceans, prolonged El-Nino events, crop failures and disease. The ozone layer prevents high levels of harmful UV radiation from reaching the surface. When a volcano releases vast amounts of SO2, the resulting volcanic plume absorbs UV radiation but blocks sunlight. This limits ozone formation, creating an ozone hole and heightening the chances of UV stress.

The scientific team examined UV radiation levels after the Toba eruption using the ModelE climate model developed by NASA’s Goddard Institute for Space Studies to simulate the possible after-effects of different sizes of eruptions.

Their model suggests the Toba SO2 cloud depleted global ozone levels by as much as 50 per cent. They also found the effects on ozone were significant, even under relatively small eruption scenarios.

The resulting health hazards from higher UV radiation at the surface would have significantly affected human survival rates. The UV stress effects could be similar to the aftermath of a nuclear war. For example, crop yields and marine productivity would drop due to UV sterilization effects. Going outside without UV protection would cause eye damage and sunburn in less than 15 minutes. Over time, skin cancers and general DNA damage would have led to population decline.

Source: The Independent.

Source : NASA