Le bruit le plus fort jamais enregistré // The loudest sound ever recorded

Aujourd’hui, notre société est devenue extrêmement bruyante et certains sons peuvent atteindre des volumes dangereusement élevés, suffisamment forts pour provoquer une perte auditive permanente. Ainsi, on reproche souvent aux jeunes d’écouter de la musique à un volume beaucoup trop élevé et les concerts envoient des décibels à tout va, sans que cela soit contrôlé.

Mais quel est le bruit le plus fort jamais enregistré sur Terre ?
L’éruption du Krakatau en Indonésie en 1883 est souvent considérée comme le son le plus fort de l’histoire. On a entendu l’explosion à plus de 3 000 kilomètres de distance, et les baromètres du monde entier ont capté la variation de pression que l’événement a provoquée. À 160 km de distance, l’éruption a atteint environ 170 décibels, un niveau sonore suffisant pour causer des problèmes auditifs permanents. À 64 km de distance, des marins ont déclaré que le bruit était si puissant qu’il pouvait leur perforer les tympans. Cependant, nous ne savons pas exactement quel était le niveau de bruit de l’éruption du Krakatau à sa source, car personne n’était présent pour effectuer des mesures avec des instruments fiables. En général, l’oreille humaine tolère des sons jusqu’à environ 140 décibels. Au-delà, le bruit devient douloureux et insupportable. Selon les Instituts nationaux de la santé (NIH), l’écoute de 85 décibels pendant quelques heures, de 100 décibels pendant 14 minutes ou de 110 décibels pendant deux minutes peut causer des dégâts à notre appareil auditif.
On pense aujourd’hui que l’explosion du Krakatau a atteint environ 310 décibels. À ce niveau, les ondes sonores ne se comportent plus comme des sons normaux. Aux alentours de 194 décibels, elles se transforment en ondes de choc. Il s’agit de puissantes zones de pression créées lorsqu’un objet se déplace à une vitesse supersonique. L’onde de choc du Krakatau était si puissante qu’elle a fait sept fois le tour de la Terre. Comme je l’ai indiqué plus haut, il convient de préciser qu’il ne s’agit que d’estimations, car le bruit émis par l’explosion du Krakatau n’a jamais été mesuré scientifiquement.

L’Anak Krakatau aujourd’hui


Séquence éruptive sur l’Anak Krakatau (Photos: C. Grandpey)

Un autre candidat au titre de bruit le plus fort est l’explosion de la météorite de Toungouska en 1908 au-dessus de la Sibérie. Le 30 juin 1908, cet événement a rasé des centaines de kilomètres carrés d’arbres et propagé des ondes de choc à travers le monde. L’explosion de Toungouska a été à peu près aussi forte que celle du Krakatau, avec un niveau sonore d’environ 300 à 315 décibels. Cependant, comme pour l’éruption du Krakatau, l’explosion de Toungouska n’a été enregistrée que par des instruments situés à très grande distance et aucune mesure n’a été effectuée à la source.

Situation et zones d’impact de la météorite de la Toungouska. Zone 1 (R=20 km) : forêt détruite (rouge) Zone 2 (R=100 km) : dégâts, brûlures, morts d’animaux (orange) Zone 3 (R=1500 km) : bruit de l’explosion (dégradé bleu) [Source: Wikipedia]

Plus récemment, on pense que le son le plus fort jamais enregistré est celui de l’éruption du Hunga Tonga-Hunga Haʻapai, un volcan sous-marin de l’archipel tongien, dans le Pacifique Sud, en janvier 2022. L’énergie de l’explosion du 15 janvier 2022 a été mesurée, et est équivalente à celle d’un séisme de magnitude 5,8. Cette puissante éruption a produit une onde sonore qui a fait plusieurs fois le tour du globe et a été entendue par des personnes à des milliers de kilomètres de distance, notamment en Alaska et en Europe centrale.
Tout autour du monde, les baromètres ont enregistré l’onde de choc provoquée par l’explosion. Elle s’est déplacée autour de la planète à une vitesse de 1100 km/h. Selon l’Organisation Mondiale de la Météo, un baromètre suisse a mesuré une amplitude de 2,5 hectoPascals (hPa) de pression.

Source: NASA, NOAA

Étrangement, l’onde de pression la plus puissante de l’histoire récente était presque inaudible pour l’oreille humaine. Des scientifiques ont tenté de créer d’énormes ondes de pression en laboratoire. Lors d’une expérience, des chercheurs ont utilisé un laser à rayons X pour projeter un jet d’eau microscopique. Ils ont produit ainsi une onde de pression estimée à environ 270 décibels. C’est plus bruyant que le décollage de la fusée Saturn V qui a transporté les astronautes d’Apollo sur la Lune, estimé à environ 203 décibels. Cependant, l’expérience au laser a été réalisée dans une chambre à vide, de sorte que l’onde de pression de 270 décibels était totalement inaudible. Les ondes sonores ont besoin d’un milieu, comme l’air, l’eau ou un matériau solide, pour se propager.

En fin de compte, la plupart des scientifiques s’accordent à dire que l’onde sonore la plus puissante enregistrée à l’époque moderne a été celle émise lors de l’éruption du volcan Tonga en 2022.

Source : Live Science via Yahoo News.

———————————————–

Today, our society is noisier than ever and some noises can reach dangerously high volumes, loud enough to cause permanent hearing loss. Youngsters are often reproached for listening to music with a volume tht is much too high. Concerts send high levels of decibels with no control.

But what was the loudest sound ever recorded on Earth?

The 1883 eruption of Krakatau in Indonesia is often considered the loudest sound in history. People heard the blast more than 3,000 kilometers away, and barometers around the world picked up its pressure wave. At 160 km away, the eruption reached an estimated 170 decibels, enough to cause permanent hearing damage. At 64 km away, sailors said that the boom was strong enough to rupture eardrums.However, we don’t really know with precision how loud the Krakatau eruption was at its source because no one was close enough to measure it with reliable instruments.

Typically, people can tolerate sounds up to around 140 decibels, beyond which sound becomes painful and unbearable. According to the National Institutes of Healthearing, damage can occur after listening to 85 decibels for a few hours, 100 decibels for 14 minutes or 110 decibels for two minutes.

Modern estimates suggest that the Krakatau blast reached about 310 decibels. At this level, sound waves no longer behave like normal sound. Instead, at around 194 decibels, they turn into shock waves. These are powerful pressure fronts created when something moves faster than the speed of sound. Krakatau’s shock wave was so strong that it circled the planet seven times.

Again, these are just estimates as the noise emitted by the Krakatau explosion was never scientifically mrasured.

Another contender for the loudest sound is the 1908 Tunguska meteor explosion over Siberia that flattened trees across hundreds of square kilometerss and sent pressure waves around the world. The Tunguska explosion was approximately as loud as the Krakatau blast, at circa 300 to 315 decibels. However, like the Krakatau eruption, the Tunguska blast was recorded only by instruments that were very far away.

More recently, it is believed that the loudest sound recorded is the January 2022 eruption of Hunga, Tonga-Hunga Haʻapai, a submarine volcano in the Tongan archipelago in the southern Pacific Ocean. This powerful eruption produced a sound wave that traversed the globe multiple times and was heard by humans thousands of kilometers away, including in Alaska and Central Europe.

One of the closest scientific stations to the underwater eruption – in Nukua’lofa, about 68 km away – recorded a pressure jump of about 1,800 pascals. One researcher explained that « if you were to try to turn that into a normal « decibel » number at 1 meter from the source, you’d get about 256 decibels. » However, he added that would be bad science, because this wasn’t a normal sound wave at all. Close to the source, it acted more like fast-moving air being pushed outward by the explosion. The Tonga blast was simply too big to fit into the normal decibel scale.

Strangely, the most powerful pressure wave in recent history was mostly inaudible to people. Scientists have tried to create huge pressure waves in laboratories. In one experiment, researchers used an X-ray laser to blast a microscopic water jet, which produced a pressure wave estimated at about 270 decibels. This is louder than the launch of the Saturn V rocket that carried Apollo astronauts to the moon, which was estimated at about 203 decibels. However, the laser experiment was done inside a vacuum chamber, so the 270-decibel pressure wave was completely silent. Sound waves need a medium such as air, water or solid material to travel.

In the end, most scientists admit that the most powerful sound-like wave recorded in the modern era was during the Tonga eruption in 2022.

Source : Live Science via Yahoo News.

Hunga Tonga-Hunga Ha’apai : l’éruption de tous les records (2ème partie)  // The eruption of all records (part 2)

L’éruption du 15 janviers 2022.

Une puissante éruption a de nouveau eu lieu sur le volcan Hunga Tonga-Hunga Ha’apai le 15 janvier 2022. Le panache de cendre et de gaz s’est élevé à environ 16,7 km au-dessus du niveau de la mer, selon le VAAC de Wellington. Il s’est étendu de manière concentrique sur une distance d’environ 130 km par rapport au volcan, créant un panache de 260 km de diamètre. Selon le service géologique des Tonga, l’éruption a duré plus de 12 heures. C’est la plus importante observée depuis décembre 2021.

Source: Tonga Services

Tsunami.

Des vagues de tsunami de 83 cm ont été observées par des jauges à Nuku’alofa et des vagues de 60 cm ont été enregistrées à Pago Pago, la capitale des Samoa américaines. Une alerte tsunami a été émise pour toutes les îles des Tonga; il a été conseillé aux habitants de s’éloigner de la côte. Le tsunami a détruit des villages et coupé les communications dans l’archipel des Tonga et ses 105 000 habitants. Trois personnes ont été tuées. Ce bilan est faible car la population est bien préparée pour faire face à un tsunami. Les habitants sont même probablement parmi les mieux préparés pour affronter les catastrophes naturelles, avec des années d’exercices tsunami: C’est pourquoi de nombreuses personnes ont su se réfugier sur des endroits plus élevés.

La vague de tsunami a provoqué une marée noire au Pérou lorsqu’un pétrolier battant pavillon italien a déversé 6 000 barils de pétrole dans l’océan Pacifique, près de la raffinerie de La Pampilla dans la banlieue de Lima. Le pétrolier déchargeait sa cargaison à La Pampilla lorsque la connexion entre le navire et le terminal s’est rompue.

Une particularité de la vague de tsunami est sa hauteur. D’après une étude récente publiée dans la revue Ocean Engineering, elle aurait atteint une hauteur de 90 mètres à son point de départ, soit environ neuf fois la hauteur du tsunami qui a frappé les côtes du Japon le 11 mars 2011, avec à la clé la catastrophe à la centrale nucléaire de Fukushima. Un autre puissant tsunami a également frappé le Chili en 1960. Que ce soit au Japon ou au Chili, la hauteur initiale de la vague a été estimée à une dizaine de mètres, autrement dit rien en comparaison de celle générée lors de l’éruption du Hunga Tonga-Hunga Ha’apai.

Les tsunamis de 2011 et 1960 ont pourtant été bien plus dévastateurs et meurtriers. Plus de 18.000 personnes ont péri en 2011, alors que le tsunami du Hunga Tonga n’a causé la disparition que de quelques personnes. Les scientifiques prennent en compte plusieurs paramètres pour expliquer cette différence de bilan. Il y a la distance entre la source du tsunami et les terres, la morphologie du plancher océanique et du littoral, mais également d’autres facteurs, comme la fusion de plusieurs vagues, comme cela semble s’être produit en 2011. À l’approche des côtes, une vague de tsunami peut ainsi être soit être atténuée, ou bien amplifiée. Le volcan Hunga Tonga est situé à environ 70 kilomètres des îles Tonga. C’est probablement cette distance qui a permis d’éviter le pire.

Source : USGS

Onde de choc.

L’onde de choc générée par l’éruption a parcouru plusieurs milliers de kilomètres, a été observée depuis l’espace et enregistrée en Nouvelle-Zélande à environ 2000 km. Elle s’est déplacée à plus de 300 mètres par seconde et était si puissante qu’elle a fait résonner l’atmosphère comme le fait une cloche. C’est l’onde de choc la plus puissante depuis l’éruption du Krakatau (Indonésie) en 1883. Grâce au transfert de cette énergie de l’atmosphère vers l’océan, l’onde de choc a amplifié les vagues océaniques dans le monde entier, les a repoussées plus loin et a accéléré leur vitesse de déplacement, un phénomène pour lequel les centres d’alerte aux tsunamis se sont pas équipés. Les modèles de prévision et les systèmes d’alerte, conçus principalement pour évaluer les vagues déclenchées par les séismes conventionnels, ont été déconcertés par l’événement des Tonga et ont donc commis des erreurs.

Effets de l’éruption Source : NASA

Perturbations atmosphériques.

Plusieurs études ont indiqué que l’éruption du volcan Hunga Tonga-Hunga Ha’apai a provoqué des perturbations à grande échelle dans l’atmosphère terrestre. En utilisant les données enregistrées par plus de 5 000 récepteurs GNSS – Global Navigation Satellite System – situés à travers le monde, les scientifiques de l’Observatoire Haystack du Massachusetts Institute of Technology (MIT) et leurs collègues de l’Université arctique de Norvège ont observé des preuves d’ondes atmosphériques générées par les éruptions et de leurs empreintes ionosphériques à 300 kilomètres au-dessus de la surface de la Terre, et cela pendant une longue période. Ces ondes atmosphériques ont été actives pendant au moins quatre jours après l’éruption et ont fait trois fois le tour du globe. Les perturbations ionosphériques sont passées au-dessus des États-Unis six fois, d’abord d’ouest en est, puis en sens inverse. Cette éruption a été extraordinairement puissante et a libéré une énergie équivalente à 1 000 bombes atomiques de Hiroshima.
Une autre étude, menée par des chercheurs du MIT Haystack Observatory et de l’Arctic University of Norway, a été publiée le 23 mars 2022 dans la revue Frontiers in Astronomy and Space Sciences. Les auteurs pensent que les perturbations atmosphériques sont un effet des ondes de Lamb ; ces ondes, ainsi appelées d’après le mathématicien Horace Lamb, se déplacent à la vitesse du son sans grande réduction de leur amplitude. Bien qu’elles soient principalement situées près de la surface de la Terre, ces ondes peuvent échanger de l’énergie avec l’ionosphère de manière complexe. La nouvelle étude précise que « la présence dominante des ondes de Lamb a déjà été signalée lors de l’éruption du Krakatau en 1883 et à d’autres occasions. L’étude fournit pour la première fois une preuve substantielle de leurs empreintes de longue durée dans l’ionosphère à l’échelle de la planète. »

—————————————

The eruption of January 15, 2022.
A powerful eruption took place again on the Hunga Tonga-Hunga Ha’apai volcano on January 15th, 2022. The plume of ash and gas rose about 16.7 km above sea level, according to the Wellington VAAC. It extended concentrically over a distance of about 130 km from the volcano, creating a plume 260 km in diameter. According to the Tonga Geological Survey, the eruption lasted more than 12 hours. This was the largest eruption since December 2021.

A tsunami.
Tsunami waves of 83 cm were observed by gauges in Nuku’alofa and waves of 60 cm were recorded in Pago Pago, the capital of American Samoa. A tsunami warning was issued for all islands in Tonga; locals were advised to move away from the coast. The tsunami destroyed villages and cut communications in the Tonga archipelago and its 105,000 inhabitants. Three people were killed. This death toll is low because the population is well prepared to face a tsunami. The inhabitants are even probably among the best prepared to face natural disasters, with years of tsunami exercises: This is why many people knew how to take refuge on higher places.
The tsunami wave caused an oil spill in Peru when an Italian-flagged tanker spilled 6,000 barrels of oil into the Pacific Ocean near the La Pampilla refinery on the outskirts of Lima. The tanker was unloading its cargo at La Pampilla when the connection between the ship and the terminal broke.
A peculiarity of the tsunami wave was its height. According to a recent study published in the journal Ocean Engineering, it probably reached a height of 90 meters at its starting point, approximately nine times the height of the tsunami which hit the coasts of Japan on March 11th, 2011, with the disaster at the Fukushima nuclear plant. Another powerful tsunami also hit Chile in 1960. Whether in Japan or Chile, the initial height of the wave was estimated at ten meters, in other words nothing compared to that generated during the eruption of the Hunga Tonga-Hunga Ha’apai.
The 2011 and 1960 tsunamis, however, were far more devastating and deadly. More than 18,000 people died in 2011, while the Hunga Tonga tsunami caused the deaths of only a few people. Scientists take into account several parameters to explain this difference. There is the distance between the source of the tsunami and the land, the morphology of the ocean floor and the coastline, but also other factors, such as the merger of several waves, as seems to have happened in 2011. Approaching the coast, a tsunami wave can thus either be attenuated or amplified. The Hunga Tonga volcano is located about 70 kilometers from the Tonga Islands. It is probably this distance that made it possible to avoid the worst.

A shock wave.
The shock wave generated by the eruption traveled several thousand kilometres, was observed from space and recorded in New Zealand around 2000 km away. It moved at over 300 meters per second and was so powerful that it rang the atmosphere like a bell. It was the most powerful shock wave since the eruption of Krakatau (Indonesia) in 1883. Thanks to the transfer of this energy from the atmosphere to the ocean, the shock wave amplified the ocean waves in the world, pushed them further and accelerated their speed, a phenomenon for which the tsunami warning centers are not equipped. Prediction models and warning systems, designed primarily to assess waves triggered by conventional earthquakes, were confused by the Tonga event and therefore made mistakes.

Atmospheric disturbances.
Several studies have indicated that the eruption of the Hunga Tonga-Hunga Ha’apai volcano caused large-scale disturbances in the Earth’s atmosphere. Using data recorded by more than 5,000 GNSS – Global Navigation Satellite System – receivers located around the world, scientists from the Haystack Observatory at the Massachusetts Institute of Technology (MIT) and their colleagues from the Arctic University of Norway have observed evidence of atmospheric waves generated by eruptions and their ionospheric footprints 300 kilometers above the Earth’s surface, and this for a long time. These atmospheric waves were active for at least four days after the eruption and circled the globe three times. Ionospheric disturbances passed over the United States six times, first from west to east, then in the opposite direction. This eruption was extraordinarily powerful and released energy equivalent to 1,000 Hiroshima atomic bombs.
Another study, conducted by researchers at MIT Haystack Observatory and the Arctic University of Norway, was published on March 23rd, 2022 in the journal Frontiers in Astronomy and Space Sciences. The authors believe that atmospheric disturbances are an effect of Lamb waves; these waves, so called after the mathematician Horace Lamb, travel at the speed of sound without much reduction in their amplitude. Although mostly located near the Earth’s surface, these waves can exchange energy with the ionosphere in complex ways. The new study states that « the dominant presence of Lamb waves was already reported during the eruption of Krakatau in 1883 and on other occasions. The study provides for the first time substantial evidence of their long-lasting footprints in the ionosphere on a planetary scale. »

Tsunami de l’éruption aux Tonga: pourquoi les prévisionnistes se sont trompés // Tonga eruption tsunami : why forecasters were mistaken

L’éruption volcanique du 15 janvier aux Tonga a déclenché une onde de choc atmosphérique qui s’est propagée à une vitesse proche de lcelle du son, poussant devant elle de puissantes vagues à travers le Pacifique, jusqu’aux côtes du Japon et du Pérou, à des milliers de kilomètres.
Les modèles de prévision et les systèmes d’alerte, conçus principalement pour évaluer les vagues déclenchées par les séismes conventionnels, ont été déconcertés par l’événement de Tonga et ont donc commis des erreurs. Ils n’ont pas tenu compte de l’effet amplifiant de l’onde de choc. On se rend donc compte du point faible ces systèmes qui ont été incapables de prévoir avec précision à quel moment les vagues toucheraient terre.
L’éruption du volcan Hunga Tonga-Hunga Ha’apai a déclenché un tsunami qui a détruit des villages et coupé les communications dans l’archipel des Tonga et ses 105 000 habitants. Trois personnes ont été tuées. Ce bilan est faible car la population est bien préparée pour faire face à un tsunami. Les habitants sont même probablement parmi les mieux préparés pour affronter les catastrophes naturelles, avec des années d’exercices tsunami: C’est pourquoi de nombreuses personnes ont su se réfugier sur des endroits plus élevés.
S’agissant du Pérou, le manque d’informations précises a peut-être contribué à la mort de deux personnes qui se sont noyées dans des vagues inhabituellement hautes, ainsi qu’à la marée noire majeure qui a souillé le littoral près de la raffinerie de La Pampilla.
Les scientifiques expliquent qu’ils doivent maintenant réévaluer le risque tsunami pour d’autres volcans dans le monde. Par exemple, ils pensaient que le volcan sous-marin Kick’em Jenny ne posait qu’un risque de tsunami pour l’île voisine de la Grenade, dans les Caraïbes. Mais la vague pourrait très bien affecter l’ensemble des Caraïbes et du golfe du Mexique, et peut-être même l’océan Atlantique à grande échelle, si un événement de type Tonga devait se produire.
Les tsunamis déclenchés par des éruptions volcaniques sont rares dans l’histoire moderne. L’onde de choc générée par le volcan des Tonga compte parmi les plus importantes jamais enregistrées; elle est similaire à celle produite par l’éruption du Krakatoa en 1883.
Avant le tsunami de 2018 qui a suivi l’éruption de l’Anak Krakatau, un tsunami déclenché par un volcan ne s’était pas produit dans l’océan depuis plus d’un siècle. A côté de cela, 90 % des tsunamis sont déclenchés par des séismes classiques. En conséquence, les systèmes d’alerte aux tsunamis sont programmés pour donner la priorité aux événements sismiques classiques. Les instruments disposés sur le plancher océanique surveillent les variations anormales de la hauteur des vagues; ils envoient des informations par balises de surface, puis par satellite, à un centre d’alerte pour évaluation.
Le Pacific Tsunami Warning Center à Hawaï a tout d’abord mis en garde contre des vagues dangereuses à moins de 1 000 km de l’éruption des Tonga. Cependant, leur bulletin émis par le Centre expliquait qu' »en raison de la source volcanique, nous ne pouvons pas prévoir l’amplitude des tsunamis ni jusqu’où le risque de tsunami peut s’étendre ». Quelque 10 heures plus tard, l’alerte a été mise à jour et incluait une menace possible pour le Pérou, une évolution surprenante étant donné que le tsunami près des Tonga était relativement faible.
Entraînées par la gravité, les vagues de tsunami se déplacent à environ 200 mètres par seconde. Cependant, l’onde de choc générée par le volcan des Tonga s’est déplacée à plus de 300 mètres par seconde et était si puissante qu’elle a fait résonner l’atmosphère comme le fait une cloche.
Grâce au transfert de cette énergie de l’atmosphère vers l’océan, l’onde de choc a amplifié les vagues océaniques dans le monde entier, les a repoussé plus loin et accéléré leur vitesse de déplacement, un phénomène pour lequel les centres d’alerte aux tsunamis se sont pas équipés.
Source : Reuters, Yahoo Actualités.

————————————————

The January 15th volcanic eruption in Tonga unleashed an atmospheric shockwave that radiated out at close to the speed of sound, pushing large waves across the Pacific to the shores of Japan and Peru, thousands of kilometres away.

Forecasting models and warning systems, designed primarily to assess earthquake-triggered waves were disconcerted by the tonga event. They did not account for the boosting effects of the shockwave. It was a critical flaw in these systems, leaving them unable to predict exactly when the waves would hit land.

The Hunga Tonga-Hunga Ha’apai eruption triggered a tsunami that destroyed villages and knocked out communications for the South Pacific nation of about 105,000 people. Three people have been reported killed. However Tongans were well equipped to deal with the tsunami. They are also considered among the most prepared for natural disasters, with years of tsunami drills so that many people knew to evacuate to higher ground.

But for faraway Peru, for example, the lack of accurate information may have contributed to the death of two people who drowned in unusually high waves, as well as the major oil spill near La Pampilla refinery.

Experts say they need to re-evaluate tsunami hazards for other volcanoes around the world. For example, the Kick’em Jenny underwater volcano is thought to pose only a regional tsunami risk to the neighboring Caribbean island of Grenada. But it may very well affect the entire Caribbean and Gulf of Mexico, and possibly even the Atlantic and global oceans, if a Tonga-type event were to happen.

Volcano-triggered tsunamis have been rare in modern history, and the shockwave from Tonga’s volcano was among the largest ever recorded, similar to the one produced by the 1883 eruption of Krakatoa.

Prior to the 2018 tsunami that followed the eruption of Anak Krakatau, a tsunami set off by a volcano had not happened in the ocean in more than a century. Rather, 90 percent of tsunamis are triggered by earthquakes. As a consequence, tsunami warning systems are programmed to prioritize seismic events. Seafloor instruments monitor for irregular changes in wave height, sending information by surface buoy and then satellite to a warning centre for assessment.

The Pacific Tsunami Warning Center in Hawaii initially warned of dangerous waves within 1,000 km of the Tonga eruption. However, their bulletin noted that « due to the volcano source we cannot predict tsunami amplitudes nor how far the tsunami hazard may extend. » Roughly 10 hours later, the warning was updated to include a possible threat to Peru, a surprising development given that the tsunami near Tonga was relatively small.

Tsunami waves, driven by gravity, travel at around 200 metres per second. However, the shockwave from Tonga’s volcano moved at more than 300 metres per second and was so powerful that it caused the atmosphere to ring like a bell.

Through the transfer of this energy from the atmosphere to the ocean, the shockwave amplified ocean waves around the world, pushing them farther afield and accelerating their travel time – something tsunami warning centres were not equipped to handle.

Source: Reuters, Yahoo News.

L’éruption du 15 janvier 2022 vue depuis l’espace (Source: Japan Meteorological Agency)

Quelques réflexions sur l’éruption du Hunga Tonga Hunga Ha’apai (archipel des Tonga) // A few thoughts about the eruption of Hunga Tonga Hunga Ha’apai volcano

Dans mon Limousin natal, berceau de la superbe race bovine, il se dit que « c’est à la fin de la foire qu’on compte les bouses. ». C’est un peu la même chose en volcanologie. Faute de pouvoir prévoir les éruptions, on s’attarde sur leur bilan une fois que les événements sont terminés.

C’est exactement ce qui vient de se produire à l’occasion de l’éruption du volcan sous-marin Hunga Tonga Hunga Ha’apai dans l’archipel des Tonga.

Certes, on connaissait l’existence de ce volcan qui s’était déjà manifesté de manière spectaculaire en 2014 avec des gerbes cypressoïdes typiques des éruptions phréato-magmatiques. L’événement avait donné naissance à une île double qui émergeait à la surface de l’océan.

Le 19 décembre 2021, et le 13 janvier 2022, des séquences explosives avaient annoncé un réveil du volcan sous-marin. Et puis, le 15 janvier 2022, Badaboum! Sans que personne ne l’ai annoncée, une puissante explosion a secoué le Hunga Tonga Hunga Ha’apai, avec un très volumineux panache de vapeur et de cendre qui a grimpé jusqu’à une vingtaine de kilomètres de hauteur et s’est étalé sur quelque 260 km de diamètre.

Une onde de choc s’est propagée sur quasiment la moitié du globe terrestre. Elle a été ressentie en Alaska et même en France. On a, bien sûr, évoqué l’onde de choc provoquée en 1883 par l’éruption du Krakatau (Indonésie) qui avait fait 7 fois le tour de la planète. Un scientifique a précisé qu’ « on a l’habitude de dire que c’est l’équivalent de 10 000 bombes atomiques. »

Un tsunami a frappé tous les rivages du Pacifique, comme en Nouvelle Zélande, au Chili ou à Hawaii où des embarcations ont rompu leurs amarres. L’hypothèse la plus répandue est que le tsunami du 15 janvier a été déclenché par des effondrements dans la caldeira qui a provoqué l’éruption. De leur côté, les scientifiques japonais pensent qu’il a pu être causé par un changement soudain de pression atmosphérique dû à l’éruption.

Alors que personne n’a su prévoir l’éruption, on nous explique maintenant pourquoi elle a été si violente. Un scientifique de l’IRD a déclaré sur France Info: « Ce volcan est de type andésitique. Il est riche en silice et il a tendance à produire beaucoup d’explosions. L’eau se mélange au magma, c’est ce que l’on appelle une éruption phréato-magmatique. L’eau qui interagit avec le magma crée encore plus de gaz. » En somme, rien de plus que ce que l’on savait déjà.

Comme je l’ai indiqué précédemment, l’île double apparue en 2014 n’est que la partie émergée du volcan qui cache sous la surface de l’océan une grande caldeira de 4 à 6 kilomètres de diamètre. Cette caldeira montre que ce volcan a déjà connu des éruptions gigantesques par le passé. L’une d’elles aurait eu lieu il y a 1000 ans. Cela conduit déjà certains scientifiques audacieux à parler d’un cycle volcanique millénaire et la dernière éruption ferait donc partie de ce cycle. Facile à dire quand on est un être humain dont l’espérance de vie ne dépasse que rarement les 100 ans! Il n’y aura personne pour contredire aujourd’hui une telle affirmation.

L’éruption et le tsunami ont certes provoqué de gros dégâts dans les Tonga, mais ils n’ont heureusement tué personne, malgré la proximité de l’événement (65 km de la capitale, Nuku’alofa). Il semblerait que les deux seules victimes se trouvent au Pérou où des nageurs se sont noyés, surpris par des vagues anormalement hautes. Des vagues de 1,20 mètre ont déferlé sur la capitale des Tonga où les habitants ont déclaré avoir fui vers les hauteurs, laissant derrière eux des maisons inondées. Des bateaux et de gros rochers ont été rejetés sur le rivage; l’électricité et les communications ont été coupées. L’épais nuage éruptif a provoqué des retombées de cendres sur la capitale, avec une contamination de l’eau.

Aujourd’hui, le centre d’alerte aux tsunamis (Tsunami Warning Center) à Hawaii est en mesure d’alerter sur la progression des vagues mais, comme l’a fait remarquer un sismologue français, le tsunami provoqué par l’éruption du volcan tongien « a pris tout le monde de court. En effet, les systèmes d’alerte sont faits pour détecter les tsunamis provoqués par les séismes, les plus fréquents, et pas ceux dus à l’activité volcanique, beaucoup plus rares. » Là encore, il reste à faire de gros progrès.

On le sait depuis longtemps, la prévision volcanique n’est pas très élevée sur les volcans de type strombolien ou hawaiien, mais elle est quasiment nulle sur les volcans explosifs comme ceux de la Ceinture de Feu du Pacifique. Les trop nombreuses victimes du Krakatau, du Merapi, du Semeru (Indonésie) ou encore du Fuego (Guatemala) et du Mt Ontake (Japon) sont là pour nous inviter, nous autres pauvres humains, à la modestie et à l’humilité.

————————————-

The submarine volcano Hunga Tonga Hunga Ha’apai which has just erupted in the Tonga archipelago was not unknown. It had already erupted in a dramatic way in 2014 with the typical cypressoidal sheaves of phreato-magmatic eruptions. The event gave birth to a dual island which emerged on the surface of the ocean.
On December 19th, 2021, and January 13th, 2022, explosive sequences announced an awakening of the submarine volcano. And then, on January 15th, 2022, without anyone having announced it, a powerful explosion shook Hunga Tonga Hunga Ha’apai, with a very voluminous steam and ash plume which rose up to twenty kilometers in height and spread over some 260 km in diameter.
A shock wave spread over almost half of the globe. It was felt in Alaska and even in France. Many people reminded us of the shock wave caused in 1883 by the eruption of Krakatau (Indonesia) which circled the planet 7 times. A scientist added that « it was the equivalent of 10,000 atomic bombs. »
A tsunami hit all the shores of the Pacific Ocean, such as in New Zealand, Chile or Hawaii where boats broke their moorings. The mostaccepted hypothesis is that the January 15th tsunami was triggered by collpapses in the caldera that caused the eruption. For their part, Japanese scientists believe that it may have been caused by a sudden change in atmospheric pressure due to the eruption.
While no one knew how to predict the eruption, we are now being told why it was so violent. An IRD scientist told France Info: « This volcano is of the andesitic type. It is rich in silica and it tends to produce a lot of explosions. The water mixes with the magma. « It’s called a phreato-magmatic eruption. The water that interacts with the magma creates even more gas. » In short, this scientist did not say anything more than what we already knew.
As I put it before, the dual island that appeared in 2014 is only the emerged part of the volcano which conceals under the surface of the ocean a large caldera 4 to 6 kilometers in diameter. This caldera has revealed that this volcano already experienced gigantic eruptions in the past. One of them probably took place 1000 years ago. This is already leading some audacious scientists to speak of a millennial volcanic cycle and the latest eruption would therefore be part of this cycle. This is easy to say for a human being whose life expectancy rarely exceeds 100 years! There will be no one today to contradict such a statement.
The eruption and the tsunami certainly caused great damage in Tonga, but fortunately they did not kill anyone, despite the proximity of the event (65 km from the capital, Nuku’alofa). It seems that the only two victims were in Peru where swimmers drowned, surprised by abnormally high waves. Four-foot waves swept through Tonga’s capital where residents said they fled to higher ground, leaving flooded homes behind. Boats and large rocks washed ashore; electricity and communications were cut off. The thick eruptive cloud caused ash to fall on the capital, with water contamination.
Today, the Tsunami Warning Center in Hawaii is able to warn about the progress of the waves but, as a French seismologist pointed out, the tsunami caused by the eruption of the Tongan volcano « took everyone by surprise. Indeed, the warning systems are made to detect tsunamis caused by tectonic earthquakes, which are the most frequent, and not those due to volcanic activity, which are much rarer. » Here again, much progress remains to be made.
We have known for a long time that volcanic prediction is not very high on Strombolian and Hawaiian volcanoes, but it is almost nil on explosive volcanoes such as those along the Pacific Ring of Fire. The too many victims of Krakatau, Merapi, Semeru (Indonesia) or even Fuego (Guatemala) and Mt Ontake (Japan) are there to invite us, us poor humans, to modesty and humility.

Gerbe provoquées par l’éruption de 2014 (Source NASA)