La plupart (pour ne pas dire tous) les volcanologues aimeraient avoir à leur disposition un tomographe géant capable de voir les entrailles d’un volcan, un peu comme les services des douanes peuvent examiner l’intérieur des bagages dans les grands aéroports. Malheureusement, nous sommes encore loin d’avoir à notre disposition une telle technologie qui nous permettrait de mieux prévoir les éruptions, domaine pour lequel nous sommes encore démunis. Malgré tout, les recherches vont bon train et plusieurs approches intéressantes ont été testées sur les volcans.
C’est ainsi que des scientifiques de l’Institut Langevin et de l’Institut de physique du globe de Paris (IPGP) ont mis au point en 2024 une méthode d’imagerie innovante capable de sonder les entrailles d’un volcan à une résolution et une profondeur inégalées jusqu’ici. Parus dans la revue Communications, Earth & Environment, ces travaux offrent une nouvelle approche de la volcanologie et pourraient permettre de mieux anticiper les éruptions.
La publication de l’IPGP explique que, de nos jours, la tomographie sismique exploite les séismes pour sonder leurs propriétés mécaniques mais elle demande une activité sismique importante et la résolution des images obtenues est seulement de l’ordre de quelques kilomètres. Les scientifiques de l’Institut Langevin et de l’IPGP ont mis au point une nouvelle méthode d’imagerie, dite matricielle passive, qui plonge dans les entrailles du volcan jusqu’à dix kilomètres de profondeur et résout sa plomberie interne avec une précision de l’ordre de la centaine de mètres à partir du seul bruit sismique.
Ces résultats ont été obtenus sur La Soufrière de la Guadeloupe. Ils révèlent la forme tortueuse de la cheminée du volcan dans sa partie supérieure. Ils confirment aussi l’existence d’une large zone de stockage de magma en profondeur. Il s’agit d’un réseau de lentilles de magma horizontales connectées entre elles.
Pour parvenir à ce résultat, les scientifiques, en collaboration avec l’Observatoire volcanologique et sismologique de Guadeloupe, ont déployé un réseau de géophones qui captent non seulement les secousses sismiques, mais aussi le bruit sismique induit par le vent, l’océan et l’activité humaine. Ce bruit sismique mesuré pendant deux mois a servi à construire une matrice de réflexion, inspirée de travaux précédents de la même équipe sur l’échographie ultrasonore et la microscopie optique. Cette matrice est exploitée pour compenser finement les distorsions que les ondes sismiques subissent en traversant les différentes structures géologiques et poches de magma du volcan. Ces hétérogénéités ne sont alors plus un obstacle et une image de la structure interne du volcan est obtenue comme si ce dernier était devenu transparent.
Cette technique d’imagerie matricielle passive peut être appliquée à n’importe quel volcan pourvu qu’il y soit déployé un réseau dense de géophones. Elle ouvre ainsi un vaste champ d’applications en volcanologie, pour mieux comprendre la structure interne des volcans et les mouvements du magma en profondeur. Cela pourrait permettre d’anticiper de manière plus efficace les éruptions volcaniques.
Source : IPGP.
Référence: E. Giraudat, A. Burtin, A. Le Ber, M. Fink, J-C. Komorowski & A. Aubry. Matrix imaging as a tool for high-resolution monitoring of deep volcanic plumbing systems with seismic noise. Commun Earth Environ 5, 509 (2024). DOI : 10.1038/s43247-024-01659-2.

a) Vue tri-dimensionnelle du volcan obtenue par une migration confocale de la matrice de réflexion. L’image est totalement brouillée par les distorsions des ondes sismiques induites par les hétérogénéités du volcan. b) Image matricielle du volcan obtenue par apprentissage des lois de focalisation compensant les hétérogénéités de ce dernier. Jusqu’à 5 km, l’image révèle le conduit tortueux de la Soufrière. Au-delà, une zone de stockage du magma est mise en lumière avers un arrangement complexe de lentilles de magma horizontales connectées les unes aux autres. © Elsa Giraudat
++++++++++
Il y a quelques années, La Soufrière de la Guadeloupe a déjà servi de banc d’essai à une étude sur l’utilisation des muons en volcanologie. J’ai publié plusieurs notes à ce sujet sur ce blog. Cette nouvelle technologie est basée sur l’utilisation des particules en provenance des couches supérieures de l’atmosphère. J’ai décrit cette technologie plus en détail dans des notes parues le 21 novembre 2015 et le 10 février 2016 :
https://claudegrandpeyvolcansetglaciers.com/2015/11/21/muons-et-volcans-muons-and-volcanoes/
Les scientifiques français ont utilisé la tomographie muonique dans le cadre du projet DIAPHANE sur le volcan de la Soufrière à la Guadeloupe. Des équipes du CNRS ont installé des capteurs de muons cosmiques sur les flancs du volcan. La technologie a permis de «suspecter la présence d’importantes cavités» à l’intérieur de l’édifice volcanique.
En cliquant sur le lien ci-dessous, vous pourrez visionner un excellent document (en anglais) montrant la mise en place du projet DIAPHANE sur la Soufrière en avril-mai 2015 :
https://www.bo.infn.it/sminiato/iprd16/01_Lunedi/Mattina/04_Marteau.pdf
Selon les chercheurs en charge du projet DIAPHANE, son but est d’augmenter la couverture tomographique du dôme de La Soufrière de la Guadeloupe. Il s’agit aussi de fournir des données uniques, non seulement d’imagerie structurelle, mais surtout du suivi dynamique du système hydrothermal du volcan. Le rapport entre le niveau d’eau liquide et gazeuse est en effet un des points essentiels dans la compréhension du fonctionnement d’un volcan de ce type, constamment arrosé par les pluies tropicales (8 à 10 mètres de précipitations annuelles !), et siège de fréquentes éruptions phréatiques.
Voici des images de l’intérieur de la zone sommitale de La Soufrière et du Stromboli obtenues grâce à la muographie.


(Sources: IPGP, JMA)
Il faut toutefois ajouter que si ces images muoniques permettent d’avoir une idée de l’intérieur du volcan, elle n’apportent rien, ou pas grand-chose, en matière de prévision éruptive. Elles fournissent une image statique, longue à obtenir, à un moment donné. La nouvelle méthode d’imagerie matricielle passive semble un peu plus dynamique mais ne prend pas en compte tous les paramètres liés à l’activité volcanique.
Source : CNRS.
J’ai expliqué dans des notes précédentes (21 novembre 2015, 11 juillet 2016) que les muons pourraient nous aider à comprendre la structure interne de certains volcans. Un nouvel article publié dans la presse américaine va plus loin et affirme que ces particules cosmiques pourraient être utilisés pour prévoir les éruptions.
I explained in previous posts (21 November 2015, 11 July 2016) that muons could help us understand the inner structure of some volcanoes. A new article published in the American press goes farther and explains that these cosmic particles could be used to predict eruptions.






