Vers une désintégration de l’Antarctique occidental ? // Toward a disintegration of West Antarctica ?

De nos jours, avec le réchauffement climatique, on craint de plus en plus que l’Antarctique occidental s’effondre et disparaisse dans l’océan. Cela déclencherait inévitablement une augmentation rapide du niveau des mers. Ce ne serait pas la première fois qu’une telle situation se produirait. Il y a 125 000 ans, au cours de la dernière brève période chaude – baptisée Eémien – entre les périodes glaciaires, les températures étaient à peine plus élevées qu’aujourd’hui et le niveau de la mer était de 6 à 9 mètres plus élevé que de nos jours, recouvrant d’immenses étendues de terres sèches aujourd’hui.
Les scientifiques ont révélé que la source de toute cette eau était un effondrement de l’inlandsis antarctique occidental et les glaciologues s’inquiètent de la stabilité fragile de cette énorme masse de glace. Sa base, située au-dessous du niveau de la mer, risque d’être minée par le réchauffement des océans. Les glaciers qui se trouvent en amont et qui sont retenus par cette masse de glace, accéléreraient leur course vers l’océan si la plateforme ouest antarctique disparaissait. J’ai décrit ce phénomène dans les notes précédentes. Lors d’une réunion de l’American Geophysical Union à Washington, D.C., des scientifiques de l’Oregon State University ont prouvé, au moyen de carottes de sédiments, que la calotte glaciaire avait disparu dans un passé géologique récent et dans des conditions climatiques analogues à celles d’aujourd’hui.
La forte perte de masse observée en Antarctique occidental au cours des deux ou trois dernières décennies pourrait marquer le début d’une nouvelle désintégration de la calotte glaciaire de l’Antarctique occidental. Si tel est le cas, le monde devra se préparer à une hausse du niveau des mers plus importante et plus rapide que prévu. En effet, après l’effondrement de l’ancienne calotte glaciaire de l’Ouest Antarctique, certains relevés sur le terrain montrent que la hausse de la mer atteignait 2,5 mètres par siècle.
Au cours de l’Eémien, les températures globales étaient supérieures de 2°C à celles observées avant l’ère industrielle (contre 1°C aujourd’hui). Cependant, le réchauffement n’était pas dû aux gaz à effet de serre, mais à de légers changements dans l’orbite et l’axe de rotation de la Terre. L’Antarctique était probablement plus froid qu’aujourd’hui. La cause de la montée du niveau de la mer, enregistrée par les coraux fossiles situés aujourd’hui bien au-dessus de la marée haute, est longtemps restée un mystère.
Les scientifiques ont commencé par accuser la fonte de la calotte glaciaire du Groenland. Cependant, en 2011, des chercheurs ont disculpé le Groenland après avoir identifié des empreintes isotopiques de son substrat rocheux dans des sédiments provenant d’une carotte océanique forée au large de son extrémité sud. Les isotopes ont montré que la glace continuait à éroder le substrat rocheux au cours de l’Eémien. Si la calotte glaciaire du Groenland n’avait pas disparu et ne contribuait donc pas à la hausse du niveau de la mer, la suspicion se dirigeait vers calotte glaciaire de l’Antarctique occidental.
Les chercheurs de l’Université de l’Oregon ont décidé d’appliquer leur technique isotopique à l’Antarctique. Ils ont d’abord analysé les carottes de sédiments marins extraites le long de la partie occidentale de la banquise. Ils ont examiné 29 carottes et identifié des signatures géochimiques pour trois régions sources différentes du substrat rocheux: la partie montagneuse de la Péninsule Antarctique; la province d’Amundsen, près de la mer de Ross; et la zone intermédiaire, autour du glacier Pine Island, particulièrement vulnérable.
Avec ces empreintes à leur disposition, ils ont ensuite analysé les sédiments marins contenus dans une carotte prélevée au large dans la mer de Bellingshausen, à l’ouest de la Péninsule Antarctique. Un courant marin continu longe la plateforme continentale de l’Ouest Antarctique et transporte les sédiments provenant de l’érosion glaciaire en cours de route. Le courant fait s’accumuler une grande partie de ces sédiments près du site où la carotte a été prélevée. Ces sédiments s’accumulent rapidement et piègent des microorganismes à coquilles appelées foraminifères, protozoaires unicellulaires qui peuvent être datés en comparant leurs rapports isotopes d’oxygène à ceux des carottes avec des dates connues. Sur une longueur de 10 mètres, la carotte contient 140 000 ans d’accumulation de sédiments. Pendant la majeure partie de cette période, les sédiments contiennent les signatures géochimiques des trois régions du socle rocheux de l’Antarctique occidental, ce qui révèle une érosion continue provoquée par la glace. Toutefois, dans une section datant du début de l’Eémien, les empreintes disparaissent en deux endroits  tout d’abord au niveau du glacier de Pine Island, puis de la province d’Amundsen. Il ne subsiste que des sédiments de la partie montagneuse de la péninsule où les glaciers ont peut-être persisté. La datation de la carotte n’est pas très précise, ce qui signifie que la pause dans l’érosion glaciaire n’a peut-être pas eu lieu pendant l’Eémien. Il se peut aussi que la pause proprement dite soit illusoire, ou que les courants marins se soient temporairement déplacés, avec un transfert des sédiments vers un autre site.
D’autres recherches sont en cours. Le mois prochain, un navire de recherche entamera une mission de trois mois avec comme but l’extraction d’au moins cinq carottes au large de l’Antarctique occidental. Dans le même temps, le chercheur responsable de l’étude mentionnée dans cet article espère la faire publier à temps pour qu’elle fasse partie du prochain rapport des Nations Unies sur le climat. Dans les rapports de 2001 et 2007, le risque de désintégration de l’Antarctique occidental n’a pas été pris en compte dans le cadre des estimations de hausse du niveau de la mer dans les prochaines années. Ce n’est qu’en 2013 que les auteurs du rapport ont commencé à mentionner l’Antarctique.
Source: Science.

————————————————————–

Today, with global warming, there are increasing fears that West Antarctica might collapse and disappear in the ocean. This would inevitably trigger a rapid increase of ocean levels. This would not be the first time such a situation happened. Some 125,000 years ago, during the last brief warm period between ice ages – it was called the Eemian – ttemperatures were barely higher than in today’s and sea levels were 6 to 9 metres higher than they are today, drowning huge areas of land that is dry today.

Scientists have revealed that the source of all that water was a collapse of the West Antarctic Ice Sheet and glaciologists worry about the present-day stability of this formidable ice mass. Its base lies below sea level, at risk of being undermined by warming ocean waters, and the glaciers behind it would accelerate their forward movement of this mass of ice disappeared. I described this phenomenon in previous notes. Scientists from Oregon State University at a meeting of the American Geophysical Union in Washington, D.C., have provided evidence, by means of a sediment core, that the ice sheet disappeared in the recent geological past under climate conditions similar to today’s.

The big increase in mass loss observed in West Antarctica in the past decade or two might be the start of a new collapse of the West Antarctic Ice Sheet. If so, the world may need to prepare for sea level to rise farther and faster than expected: Once the ancient ice sheet collapse got going, some records show that ocean waters rose as fast as some 2.5 metres per century.

During the Eemian, global temperatures were some 2°C above preindustrial levels (compared with 1°C today). But the cause of the warming was not greenhouse gases, but slight changes in Earth’s orbit and spin axis, and Antarctica was probably cooler than today. What drove the sea level rise, recorded by fossil corals now marooned well above high tide, was a mystery.

Scientists once blamed the melting of Greenland’s ice sheet. But in 2011, researchers exonerated Greenland after identifying isotopic fingerprints of its bedrock in sediment from an ocean core drilled off its southern tip. The isotopes showed ice continued to grind away at the bedrock through the Eemian. If the Greenland Ice Sheet didn’t vanish and push up sea level, the vulnerable West Antarctic Ice Sheet was the obvious suspect.

The Oregon University researchers set out to apply their isotope technique to Antarctica. First, they analysed archived marine sediment cores drilled from along the edge of the western ice sheet. Studying 29 cores, they identified geochemical signatures for three different bedrock source regions: the mountainous Antarctic Peninsula; the Amundsen province, close to the Ross Sea; and the area in between, around the particularly vulnerable Pine Island Glacier.

Armed with these fingerprints, they then analyzed marine sediments from a core drilled farther offshore in the Bellingshausen Sea, west of the Antarctic Peninsula. A stable current runs along the West Antarctic continental shelf, picking up ice-eroded silt along the way. The current dumps much of this silt near the core’s site, where it builds up fast and traps shelled microorganisms called foraminifera, which can be dated by comparing their oxygen isotope ratios to those in cores with known dates. Over a stretch of 10 metres, the core contained 140,000 years of built-up silt. For most of that period, the silt contained geochemical signatures from all three of the West Antarctic bedrock regions, suggesting continuous ice-driven erosion. But in a section dated to the early Eemian, the fingerprints winked out: first from the Pine Island Glacier, then from the Amundsen province. That left only silt from the mountainous peninsula, where glaciers may have persisted. The dating of the core is not precise, which means the pause in erosion may not have taken place during the Eemian. It is also possible that the pause itself is illusory, that ocean currents temporarily shifted, sweeping silt to another site.

More research is on the way. Next month, a research ship will begin a 3-month voyage to drill at least five marine cores off West Antarctica. Meanwhile, the head of the research hopes to get his own study published in time to be included in the next United Nations climate report. In the 2001 and 2007 reports, West Antarctic collapse was not even considered in estimates of future sea level; only in 2013 did authors start mentioning Antarctica.

Source: Science.

La menace des plates-formes glaciaires en Antarctique // The threat of Antarctica’s ice shelves

En 2017, la plate-forme glaciaire Larsen C en Antarctique s’est désintégrée et a libéré un énorme iceberg plus grand que le département français de la Lozère dont la superficie est de 5167 kilomètres carrés. Les scientifiques ont calculé la hausse du niveau de l’océan qui résulterait de l’effondrement de deux des plates-formes les plus vulnérables de l’Antarctique.
On a beaucoup parlé de la plate-forme Larsen, mais les dernières recherches dont les résultats ont été publiés dans la revue The Cryosphere révèlent que la désintégration totale de Larsen C ne contribuerait que pour quelques millimètres à l’élévation du niveau des mers.
Les scientifiques expliquent que la désintégration de la plus petite plate-forme glaciaire George VI provoquerait environ cinq fois plus d’élévation, soit environ 22 millimètres. Ces chiffres semblent très faibles, mais ils ne représentent qu’une partie de la hausse du niveau global qui est également favorisée par la fonte des glaciers ailleurs dans le monde, ainsi que celle des calottes glaciaires du Groenland, de l’Est et de l’Ouest de l’Antarctique. La fonte  cumulée des glaciers et des calottes glaciaires pourrait causer de graves problèmes aux nations insulaires et aux populations côtières.
Comme je l’ai écrit dans les articles précédents, les plates-formes glaciaires comme Larsen C et George VI jouent un rôle de barrage et ralentissent l’écoulement de la glace qui se trouve en amont. C’est pourquoi la compréhension de leur morphologie et de leur comportement est essentielle pour prévoir la perte de glace en Antarctique.
En 2002, la plate-forme Larsen B, voisine de Larsen C, s’était déjà désintégrée en quelques semaines après la rupture et le détachement d’un très gros iceberg. L’iceberg qui s’est détaché de Larsen C en 2017 mesurait 5 800 kilomètres carrés.
Bien qu’une désintégration totale de Larsen C soit inquiétante, la dernière étude montre que la désintégration de la plate-forme George VI aurait un impact beaucoup plus important sur l’écoulement de la glace intérieure vers la mer. L’effondrement de George VI déclencherait une élévation du niveau de la mer plus importante car les glaciers retenus par cette plate-forme sont nettement plus volumineux que ceux qui se trouvent derrière Larsen C.
Les prochaines analyses des plates-formes glaciaires en Antarctique permettront aux scientifiques d’estimer avec plus de précision les impacts du réchauffement climatique sur la perte de glace et leurs conséquences sur le niveau des mers à l’échelle de la planète. Au vu de la hausse des températures prévue pour le siècle à venir, la péninsule antarctique constituera un laboratoire idéal pour étudier les changements que subiront les plates-formes glaciaires.

Les bouleversements qui se produisent actuellement dans la péninsule antarctique constituent un signal d’alarme. Il faudra étudier le comportement des plates-formes glaciaires et de la banquise ailleurs sur le continent austral. De taille beaucoup plus importante, elles ont le potentiel de faire s’élever encore davantage le niveau de la mer dans le monde.
Sources: The Cryosphere, AntarcticGlaciers.org, British Antarctic Survey.

——————————————–

In 2017, the Larsen C ice shelf in Antarctica disintegrated and released a huge iceberg larger than the French department Lozère whose area is 5167 square kilometres. Now, scientists have calculated the rise in seas that would result from the collapse of two of Antarctica’s most vulnerable ice shelves.

Much attention has been paid to the Larsen C ice shelf breakdown, but the latest research, published in the journal The Cryosphere, suggests the collapse of Larsen C will contribute just a few millimetres to global sea level rise.

Scientists determined the collapse of the smaller George VI ice shelf would trigger approximately five times the amount of sea level rise, about 22 millimetres. These numberslook very small but they are only one part of a larger sea-level rise including loss from other glaciers around the world and from the Greenland, East and West Antarctic ice sheets. Taken together, all the sources of glacier and ice sheet melting could be significant to island nations and coastal populations.

As I put it in previous posts, ice shelves like Larsen C and George VI act like dams and slow the flow of inland ice toward the coast. That’s why understanding their structural integrity is essential to forecasting the loss of Antarctic ice.

In 2002, Larsen C’s neighbour, the Larsen B ice shelf, disintegrated in a matter of weeks after a massive iceberg broke away. The iceberg that broke away from Larsen C in 2017 measured 5,800 square kilometres.

Though the breakdown of Larsen C is likely to be dramatic, the latest analysis shows the disintegration of George VI would have a greater impact on the flow of inland ice toward the sea. Indeed, the collapse of George VI would trigger greater sea level rise because the glaciers it backstops are significantly larger than those behind Larsen C.

Future analysis of Antarctica’s ice shelves can help scientists more accurately estimate the impacts of global warming on ice loss and the impacts of ice loss of global sea levels. In light of the increasing temperatures projected for the coming century, the Antarctic Peninsula provides an ideal laboratory to research changes in the integrity of floating ice shelves.

The dramatic changes taking place in the Antarctic Peninsula as a warning signal for the much larger ice sheet and ice shelf systems elsewhere in Antarctica with even greater potential for global sea-level rise.

Sources: The Cryosphere, AntarcticGlaciers.org, British Antarctic Survey.

Vue de la plate-forme George VI (Crédit photo: British Antarctic Survey)