Antarctique : fonte glaciaire plus rapide que prévu // Antarctica : glacial melting faster than predicted

J’ai écrit plusieurs notes sur ce blog (le 29 mai 2024, par exemple) expliquant que la glace de l’Antarctique fond parce que les eaux plus chaudes de l’océan Austral minent les plates-formes glaciaires par en dessous.

Source: British Antarctic Survey

Une nouvelle étude du British Antarctic Survey (BAS), publiée dans la revue Nature Geoscience, nous explique que cette fonte est plus rapide qu’on ne le pensait jusqu’à présent. Cela signifie que les modèles informatiques actuels utilisés pour prévoir la fonte des plates-formes glaciaires en Antarctique ont probablement sous-estimé le phénomène. Une fonte plus rapide des plates-formes glaciaires pourrait provoquer des inondations plus tôt que prévu dans les zones côtières et entraîner la disparition de certaines îles de très basse altitude.
L’étude est au moins la deuxième en cinq semaines à expliquer que l’eau plus chaude de l’océan Austral pourrait faire fondre les glaciers et des plates-formes glaciaires antarctiques plus rapidement que prévu. Les scientifiques s’efforcent aujourd’hui d’améliorer les modèles utilisés pour planifier l’élévation du niveau de la mer.
L’eau plus chaude de l’océan Austral peut pénétrer sur de longues distances au-delà de la « zone d’ancrage » des glaciers sur le substrat rocheux. C’est à cet endroit que cette eau plus chaude s’infiltre aujourd’hui de plus en plus profondément sous les plates-formes glaciaires. L’étude indique que cela pourrait avoir des « conséquences dramatiques » en contribuant à l’élévation du niveau de la mer.
Les auteurs affirment avoir identifié le risque d’un nouveau point de basculement (‘tipping point‘ en anglais) dans la fonte des plates-formes glaciaires de l’Antarctique, ce qui signifie que leurs projections concernant l’élévation du niveau de la mer sont très probablement sous-estimées.
Les plates-formes glaciaires sont très sensibles à la fonte de la zone d’ancrage des glaciers et un très petit changement de la température de l’océan peut provoquer une très forte augmentation de la fonte de cette zone, ce qui entraînerait une accélération de l’écoulement des glaciers en amont.

Source: British Antarctic Survey

Les derniers travaux du BAS font suite à une étude indépendante publiée en mai (voir ma note du 29 mai) et qui a révélé une « fonte accélérée » du glacier Thwaites. Cette étude, publiée dans les Actes de la National Academy of Sciences, a donné des preuves visibles que l’eau de mer chaude vient miner le glacier.
Les plates-formes glaciaires de l’Antarctique et du Groenland glissent progressivement vers l’océan et forment une zone en bord de la mer où la fonte peut se produire. Les scientifiques ne cessent de rappeler que la fonte le long de cette zone est un facteur majeur de l’élévation du niveau de la mer dans le monde. L’eau qui s’introduit sous une plate-forme glaciaire ouvre de nouvelles cavités et ces cavités laissent passer davantage d’eau, ce qui fait fondre des portions de glace encore plus grandes. Des augmentations minimes de la température de l’eau peuvent accélérer ce processus, mais les modèles informatiques utilisés par le GIEC et d’autres organismes n’en tiennent pas compte.
L’auteur principal de l’étude du BAS explique qu’il y a beaucoup plus d’eau de mer qui s’infiltre sous les glaciers côtiers qu’on ne le pensait auparavant, ce qui les rend « plus sensibles au réchauffement des océans et plus susceptibles de disparaître dans le mer ». Il ajoute qu’il faudrait aussi accorder plus d’importance aux marées qui aggravent le phénomène.
Ces études, ainsi que d’autres, qui soulignent une plus grande sensibilité des glaciers de l’Antarctique aux eaux océaniques plus chaudes signifient que l’élévation du niveau de la mer au cours du prochain siècle sera beaucoup plus importante – peut-être deux fois plus importante – que prévu.
Source : USA Today via Yahoo Actualités.

——————————————————

I have written severak posts on this blog (29 May 2024, for instnce) explaining that Antarctica was melting because the warmer waters of the Southern Ocean were undermining the ice shelves from below. A new study by the British Antarctic Survey, published in the journal Nature Geoscience, warns that this melting is faster than previously thought. This means current computer models used to predict ice-sheet melt activity in Antarctica may have underestimated the phenomenon. Faster ice sheet melting could bring greater flooding sooner than expected to coastal communities and cause some low-level islands to disappear.

The study is at least the second in five weeks to report that warmer ocean water may be helping to melt ice in glaciers and ice sheets faster than previously modeled. Scientists are working to improve these crucial models that are being used to help plan for sea level rise.

Relatively warmer ocean water can intrude long distances past the « grounding zone » where ground-based ice meets the sea and floating ice shelves, seeping between the land underneath and the ice sheet. The study warns this could have « dramatic consequences » in contributing to rising sea levels.

The authors say they have identified the possibility of a new tipping-point in Antarctic ice sheet melting, which means their projections of sea level rise might be significant underestimates.

Ice sheets are very sensitive to melting in their grounding zone and a very small change in ocean temperature can cause a very big increase in grounding zone melting, which would lead to a very big change in flow of the ice above it.

The latest research follows an unrelated study published in May that found « vigorous melting » at Antarctica’s Thwaites Glacier. ( see my post of ) That study, published in the Proceedings of the National Academy of Sciences, reported visible evidence that warm seawater is pumping underneath the glacier.

The land-based ice sheets in Antarctica and Greenland gradually slide toward the ocean, forming a boundary at the edge of the sea where melting can occur. Scientists report melting along these zones is a major factor in rising sea levels around the globe. Water intruding under an ice sheet opens new cavities and those cavities allow more water, which in turn melts even larger sections of ice. Small increases in water temperature can speed up that process, but the computer models used by the IPCC and others don’t account for that.

The lead author of the previous study explains that there is much more seawater flowing into the coastal glaciers than previously thought and it makes them « more sensitive to ocean warming, and more likely to fall apart as the ocean gets warmer. » He adds that more importance should be given to the tides which make the problem more significant.

These and other studies pointing at a greater sensitivity of Antarctic glaciers to warm water means that sea level rise this coming century will be much larger than anticipated, and possibly up to twice larger.

Source : USA Today via Yahoo News.

Antarctique : fonte du glacier Thwaites plus rapide que prévu // Antarctica : Thwaites glacier melting faster than predicted

Tout comme pour le glacier Petermann au Groenland, l’eau de l’océan Austral fait fondre le glacier Thwaites en Antarctique, en le minant par en dessous. La différence avec le Petermann est la taille. Le glacier antarctique est aussi grand que la Floride et son front mesure 120 km. S’il fondait complètement, le niveau de la mer augmenterait d’une soixantaine de centimètres dans le monde. Il y a un autre problème avec le Thwaites. S’il fond, les autres glaciers de l’Antarctique occidental feront de même car ils sont interconnectés Les conséquences pour les zones côtières du monde entier seraient terribles.

Source: BAS

Une nouvelle étude publiée dans les Actes (Proceedings) de la National Academy of Sciences a utilisé des données radar depuis l’espace pour réaliser une radiographie du glacier Thwaites. Ce travail a révélé que l’eau de l’océan s’engouffre sur des kilomètres sous le glacier, le rendant plus vulnérable à la fonte qu’on ne le pensait auparavant. Les estimations précédentes concernant l’impact de la fonte des glaciers sur le niveau des océans sont probablement bien en-deça de la vérité.
De nombreuses études ont déjà souligné la grande vulnérabilité du Thwaites. Les auteurs de la dernière appartiennent l’Université de Californie à Irvine. Les scientifiques ont utilisé des données radar satellite haute résolution, obtenues entre mars et juin 2023, pour créer une radiographie du glacier. Cela leur a permis d’observer les changements intervenus dans la « ligne d’ancrage » du Thwaites, la zone où le glacier quitte le substrat rocheux continental pour devenir une plate-forme de glace flottante. Ces zones d’ancrage au substrat rocheux sont essentielles à la stabilité des calottes glaciaires et constituent un point de vulnérabilité pour le Thwaites, mais jusqu’à présent elles ont été difficiles à étudier à cause du manque de moyens techniques.

Source: University of California,Irvine

Avant l’arrivée des données satellitaires, les chercheurs ne disposaient que de données sporadiques. Grâce aux nouvelles images satellite, ils ont pu voir l’eau de mer s’enfoncer sous le glacier sur plusieurs kilomètres, puis en ressortir, en fonction du rythme quotidien des marées. Ils ont également pu constater que la zone d’ancrage pouvait se déplacer de plus de 6 kilomètres sur un cycle de marée de 12 heures. La vitesse de l’eau de mer, qui se déplace sur des distances considérables sur une courte période, augmente la fonte des glaciers car dès que la glace fond, l’eau douce est emportée et est remplacée par de l’eau de mer plus chaude. Ce processus d’intrusion d’eau de mer à grande échelle donnera une autre dimension aux projections de l’élévation du niveau de la mer depuis l’Antarctique. Il reste maintenant à savoir si l’arrivée d’eau de mer sous le Thwaites est un phénomène nouveau ou s’il existe depuis longtemps. On ne sait pas non plus quelle est l’ampleur de ce processus autour de l’Antarctique, même s’il est fort probable qu’il se produise également sur d’autres glaciers du continent blanc.

Source: British Antarctic Survey

Source : Médias d’information internationaux.

———————————————-

Just like for the Petermann Glacier in Greenland, sea water is melting the Thwaites Glacier in Antarctica from beneath. The difference with Petermann is the size. The Antarctic glacier is as large as Florida and its front is 120 km wide. Should it melt completely, it would rise sea level around the world by about 60 centimeters. There is another problem with Thwaites. If it happens to melt, the other glaciers in West Antarctica will do the same as they are interconnected. The consequences for coastal areas around the world would be disastrous.

A new research published in the Proceedings of the National Academy of Sciences used radar data from space to perform an X-ray of the Thwaites glacier. It revealed that ocean water is pushing kilometers beneath the glacier, making it more vulnerable to melting than previously thought. Previous projections about the impact of the glacier’s melting on the ocea ns are probably largely underestimated.

Many studies have already pointed to the immense vulnerabilities of Thwaites. The authors of the latest study are from the University of California at Irvine. The scientists used high resolution satellite radar data, collected between March and June 2023, to create an X-ray of the glacier. This allowed them to build a picture of changes to Thwaites’ “grounding line,” the point at which the glacier leaves the continental bedrock and becomes a floating ice shelf. Grounding lines are vital to the stability of ice sheets, and a key point of vulnerability for Thwaites, but have been difficult to study.

Before the arrival of satellite data, researchers had only sporadic data to look at. With the new satellite images, they could observe seawater pushing beneath the glacier over many kilometers, and then moving out again, according to the daily rhythm of the tides. They could also see that thegrounding zone could move more than 6 kilometers over a 12-hour tidal cycle. The speed of the seawater, which moves considerable distances over a short time period, increases glacier melt because as soon as the ice melts, freshwater is washed out and replaced with warmer seawater.This process of widespread, enormous seawater intrusion will increase the projections of sea level rise from Antarctica. One aspect that needs to be cleared is whether the rush of seawater beneath Thwaites is a new phenomenon or whether it has existed for a long time. It is also unclear how widespread this process is around Antarctica, although it is highly likely that it is happening elsewhere as well.

Source : International news media.

Aurores françaises…

Phénomène assez exceptionnel à notre latitude, des aurores boréales ont été observées ces derniers jours en France. Ce magnifique phénomène lumineux coloré dans le ciel nocturne a été causé par une très forte tempête solaire. Il pourrait occasionner, comme en 2023, des perturbations sur les réseaux électriques et de communication.

Un ciel mauve ou rose a pu être observé depuis le Limousin, la Bourgogne, les Alpes ou la région parisienne. L’épisode de tempête géomagnétique qui a provoqué le phénomène est le plus important depuis plus de vingt ans. Il a été classée par les autorités au niveau 5, le plus élevé.

Aurore à Strabourg le 11 mai 2024 (Crédit photo: Wikipedia)

Les scientifiques nous expliquent que les aurores boréales sont liées à la réception sur Terre d’éjections de masses coronales en provenance directe du Soleil dont une partie de la surface se soulève. « Le plasma, les particules, le champ magnétique qui constituent le Soleil se détachent de celui-ci et s’envolent dans l’espace. […] Les éjections se déplacent à plusieurs centaines de kilomètres par seconde et se produisent depuis une même tache solaire, dont le diamètre est 17 fois supérieur à celui de notre planète. Ces rejets interviennent alors que le Soleil approche de son pic d’activité, selon un cycle qui revient tous les 11 ans. »

La NOAA américaine ajoute que ce genre d’événement solaire peut avoir des conséquences sur le fonctionnement des outils numériques comme les GPS, les réseaux électriques, les vaisseaux spatiaux, la navigation des satellites, etc. Peu de perturbations sont en revanche attendues sur le trafic aérien.

Lors du dernier puissant épisode d’éjections solaires en 2003 – « les tempêtes d’Halloween » – des coupures de courant étaient survenues en Suède et des transformateurs avaient été endommagés en Afrique du Sud. La plus grosse tempête solaire recensée jusqu’à présent date de 1859. Connue sous le nom d’événement de Carrington, elle avait très fortement perturbé les communications… par télégraphe.

Si la météo le permet, il devrait être possible d’observer à nouveau des aurores en France au cours du prochain week-end car l’activité solaire reste très intense ;

Source : Presse nationale et internationale.

Les aurores les plus spectaculaires se produisent dans les régions polaires E lles peuvent donc être boréales (aurora borealis) ou australes (aurora australis). Dans notre hémisphère, on les observe fréquemment depuis les régions de l’Arctique telles que l’Alaska , les territoires du Yukon canadien, l’Islande , le Groenland , la Norvège , la Suède , la Finlande , l’Écosse et la Sibérie. C’est dans ces régions qu’elles sont le plus spectaculaires. Elles peuvent prendre différents aspects, allant de simple faisceaux lumineux à la belle couleur verte à des draperies mêlant le vert et le rose qui se déploient en avançant dans le ciel hivernal. Des habitants du Yukon m’ont dit que certains épisodes sont tellement puissants que les aurores émettent des sons comme des sifflements ou des craquements. Un soir, j’ai eu l’occasion d’en observer dans le nord du Yukon canadien avec une meute de loups qui hurlait à proximité du lieu où je me trouvais. Du grand spectacle, frissons garantis !

Photos: C. Grandpey

Antarctique : le mystère de la polynie de Maud Rise // Antarctica : the mystery of the Maud Rise polynia

Chaque hiver en Antarctique (ne pas oublier que les saisons sont inversées dans l’hémisphère sud), la glace de mer qui entoure le continent double presque sa superficie. Cependant, lors des hivers 2016 et 2017, un phénomène a longtemps intrigué les scientifiques: un trou immense, baptisé polynie de Maud Rise, de la taille de la Suisse s’est ouvert dans la banquise. Le Maud Rise est un plateau océanique dans la mer de Weddell. Il s’élève, dans sa partie la moins profonde, à environ 1 000 mètres sous la surface de l’océan Austral.

Les polynies sont des zones d’eau libre entourées par la glace de mer. Elles se forment dans les régions polaires sous l’influence de divers facteurs, tels que les courants océaniques, les vents, les variations de température et les activités géologiques sous-marines. Elles peuvent être temporaires ou permanentes et fournissent des habitats vitaux pour diverses espèces marines comme les mammifères marins, les oiseaux et les poissons. Elles revêtent donc une certaine importance d’un point de vue écologique. De plus, les polynies peuvent influencer les échanges de chaleur et de gaz entre l’océan et l’atmosphère, ce qui peut avoir des conséquences significatives pour le climat régional et mondial.

En 2016 et 2017, la polynie de Maud Rise dans la mer de Weddell, a captivé l’attention des chercheurs du monde entier. Ils se sont demandé pourquoi une polynie d’une telle ampleur était apparue dans une région totalement couverte de glace, malgré les conditions hivernales rigoureuses.

Des études ont révélé que la formation de la polynie de Maud Rise résultait d’une combinaison complexe de facteurs. Elle est d’abord due à un renforcement du courant océanique circulaire dans la mer de Weddell. Ce phénomène provoque une remontée d’eau chaude des profondeurs vers la surface, favorisant ainsi la fonte de la glace de mer.

Des analyses plus poussées ont révélé l’implication de tourbillons turbulents autour de Maud Rise. Ils agissent comme des pompes favorisant la remontée d’eau salée vers la surface. Selon les chercheurs, ce processus, combiné au transport d’Ekman*, contribue à maintenir l’ouverture dans la banquise malgré les conditions défavorables.

Comme indiqué plus haut, les polynies, telles que celle de Maud Rise, ne sont pas seulement des curiosités scientifiques. Elles ont également des implications à long terme sur l’écosystème antarctique. En modifiant la circulation des courants océaniques et en influençant le transport de la chaleur dans la région, ces zones ouvertes peuvent en effet avoir des effets à long terme sur la biodiversité marine et sur le climat régional.

Comprendre ces phénomènes complexes permet de mieux appréhender les impacts du réchauffement climatique sur les régions polaires. Les recherches sur la polynie de Maud Rise apportent des éclairages précieux sur les processus océaniques qui façonnent l’Antarctique et l’océan Austral.

* Le transport d’Ekman est le déplacement horizontal des couches d’eaux superficielles de l’océan par la seule action de la friction du vent à la surface.

Source : Presse scientifique dont Sciencepost et Live Science.

Les détails de l’étude sont publiés dans Science Advances :

https://www.science.org/doi/10.1126/sciadv.adj0777

Image satellite de la polynie de Maud Rise (Source : NASA)

Schéma illustrant la formation des polynies côtières en Antarctique (Source ; Wikipedia)

—————————————————–

Every winter in Antarctica (don’t forget that the seasons are reversed in the southern hemisphere), the sea ice surrounding the continent almost doubles its surface. However, during the winters of 2016 and 2017, a phenomenon has long puzzled scientists : an immense hole, called the Maud Rise polynya, the size of Switzerland opened in the sea ice. The Maud Rise is an ocean plateau in the Weddell Sea. It rises, at its shallowest, about 1,000 meters below the surface of the Southern Ocean.
Polynyas are areas of open water surrounded by sea ice. They form in polar regions under the influence of various factors, such as ocean currents, winds, temperature variations and underlying geological activities. They can be temporary or permanent and provide vital habitats for various marine species such as marine mammals, birds and fish. They are therefore of some importance from an ecological point of view. Additionally, polynyas can influence the exchange of heat and gases between the ocean and the atmosphere, which can have significant consequences for regional and global climate.
In 2016 and 2017, the Maud Rise polynya in the Weddell Sea captivated the attention of researchers around the world. They wondered why a polynya of such magnitude had appeared in a region completely covered in ice, despite the harsh winter conditions.
Studies have revealed that the formation of the Maud Rise polynya resulted from a complex combination of factors. It is firstly due to a strengthening of the circular ocean current in the Weddell Sea. This phenomenon causes warm water to rise from the depths to the surface, thus favouring the melting of sea ice.
Further analysis revealed the involvement of turbulent eddies around Maud Rise. They act as pumps encouraging the rise of salt water towards the surface. According to the researchers, this process, combined with Ekman transport*, helps maintain the opening in the sea ice, despite unfavorable conditions.
As noted above, polynyas, such as that of Maud Rise, are not just scientific curiosities. They also have long-term implications for the Antarctic ecosystem. By modifying the circulation of ocean currents and influencing the transport of heat in the region, these open areas can indeed have long-term effects on marine biodiversity and the regional climate.
Understanding these complex phenomena allows to better understand the impacts of global warming on the polar regions. Research on the Maud Rise polynya provides valuable insight into the ocean processes that shape Antarctica and the Southern Ocean.

* Ekman transport is the horizontal movement of layers of surface water in the ocean by the sole action of wind friction on the surface.

Source: Scientific press including Sciencepost and Live Science.

Details of the study are published in Science Advances :
https://www.science.org/doi/10.1126/sciadv.adj0777