Cascade de sang en Antarctique // Blood Falls in Antarctica

Dans le sud-ouest de l’Antarctique, le glacier Taylor présente une longueur d’environ 54 kilomètres. Il a été découvert par la British National Antarctic Expedition (1901-1904). Aujourd’hui, il est l’objet de mesures et de modélisations effectuées par des chercheurs de l’Université de Californie et de l’Université du Texas. Le Taylor est un glacier « à base froide », ce qui signifie que sa base est gelée et adhère au substrat rocheux en dessous. Les autres glaciers de la planète sont « à base humide », ce qui signifie qu’ils frottent le substrat rocheux en se déplaçant et déposent des matériaux comme les moraines le long de leurs bordures. Les glaciers à base froide se déplacent un peu comme du mastic, poussés par leur propre poids.
Le glacier Taylor a intrigué les géologues pendant des décennies parce qu’il donne naissance à une chute d’eau rouge-orangé, raison pour laquelle elle a été baptisée Blood Falls.
Le phénomène a été découvert par le géologue Griffith Taylor en 1911. À l’époque, il pensait que les algues rouges vivant dans l’eau étaient responsables de la teinte de la cascade. Plus d’un siècle plus tard, les scientifiques ont découvert que la couleur de la rivière était due à des sels de fer qui suintent de la glace et qui deviennent rouges lorsqu’ils entrent en contact avec l’air.
Dans une étude de 2017, les scientifiques ont découvert que le glacier Taylor s’est formé il y a environ 2 millions d’années, et recèle un lac d’eau salée sous une épaisse couche de glace. Des millions d’années plus tard, le lac a atteint le bord du glacier et laisse échapper l’eau salée.
Dans une étude effectuée en 2015 à l’aide d’un radar capable d’observer sous la glace (voir vidéo ci-dessous), les chercheurs ont découvert un réseau de rivières coulant dans des fissures à l’intérieur du glacier. Cela signifie que de l’eau liquide peut exister à l’intérieur d’un glacier extrêmement froid.
Bien que cela semble contre-intuitif, l’eau libère de la chaleur lorsqu’elle gèle, et cette chaleur réchauffe la glace plus froide environnante. La chaleur et la température de congélation plus basse de l’eau salée rendent possible le mouvement du liquide. Dans le monde, le glacier Taylor est le plus froid avec de l’eau qui coule constamment.
Dans une étude de 2009, des chercheurs ont découvert que le lac sous-glaciaire héberge une communauté de microbes capables de vivre à des conditions extrêmes, sans lumière ni oxygène. Au lieu de cela, ils utilisent du fer et du sulfate. Les chercheurs pensent que le lac emprisonné sous le glacier il y a des millions d’années était plein de microbes. Ils aimeraient savoir comment un écosystème fonctionne sous un glacier et comment ces écosystèmes peuvent se développer sous des centaines de mètres de glace et vivre dans des conditions de froid et d’obscurité permanentes pendant de longues périodes.
Les scientifiques pensent que l’étude de ces microbes sera une aubaine pour l’astrobiologie. Ils peuvent aider à comprendre comment la vie est possible dans d’autres mondes possédant des masses d’eau gelées similaires, comme la planète Mars.
Source : Business Insider, Yahoo Actualités.

En cliquant sur ce lien, vous verrez une vidéo (sous-titrée) qui fait un bon résumé de la situation sur le glacier Taylor :

https://youtu.be/085vQpDGZdw

————————————————–

The Taylor Glacier is an Antarctic glacier about 54 kilometres long in the southwestern part of Antarctica. It was discovered by the British National Antarctic Expedition (1901–1904)

The Taylor Glacier has been the focus of a measurement and modeling effort carried out by researchers from the University of California and the University of Texas. It is is “cold-based,” meaning its bottom is frozen to the ground below. The rest of the world’s glaciers are “wet-based,” meaning they scrape over the bedrock, picking up and leaving obvious piles of debris (moraines) along their edges. Cold-based glaciers flow more like putty, pushed forward by their own weight.

The Taylor Glacier has puzzled geologists for decades because it produces a bright red river that oozes out of the ice, aptly named Blood Falls.

The phenomenon was first discovered by geologist Griffith Taylor in 1911. At the time, he thought that red algae living in the water was responsible for the water’s striking red hue. More than a century later, scientists found what causes the bloody river was iron salts seeping out of the ice that turn red when they make contact with the air.

In a 2017 study, scientists found that Taylor Glacier formed roughly 2 million years ago, trapping a saltwater lake under it. Millions of years later, the ancient lake has reached the edge of the glacier, squeezing out salt water.

In a 2015 study, using an ice-penetrating radar, researchers found a network of rivers flowing through cracks in the glacier. That means liquid water can exist inside an extremely cold glacier.

While it sounds counterintuitive, water releases heat as it freezes, and that heat warms the surrounding colder ice, The heat and the lower freezing temperature of salty water make liquid movement possible. Taylor Glacier is the coldest known glacier to have persistently flowing water.

In a 2009 study, researchers discovered that the underwater lake is home to unique inhabitants : a community of microbes that can survive extreme conditions, with no light or oxygen. Instead, they use iron and sulfate to survive.

Researchers believe the lake trapped beneath the glacier millions of years ago was full of microbes.

They would like to know how an ecosystem functions below glaciers, and how such ecosystems are able to persist below hundreds of meters of ice and live in permanently cold and dark conditions for extended periods of time.

Scientists believe studying these microbes will be a boon for astrobiology. They can shed light on how life might survive in other worlds with similar bodies of frozen water, like Mars.

Source : Business Insider, Yahoo News.

By clicking on this link, you’ll have access to a good video that sums up the situation on the Taylor Glacier :

https://youtu.be/085vQpDGZdw

Glacier Taylor et Blood Falls (Crédit photo: National Science Foundation)

Nouveau vêlage en Antarctique // New calving in Antarctica

Un énorme iceberg deux fois plus grand que New York s’est détaché d’une plate-forme glaciaire en Antarctique. D’une superficie de près de 1 600 kilomètres carrés, il a rompu ses amarres avec la plate-forme de Brunt le 22 janvier 2023. L’événement s’est produit lorsqu’une fracture majeure, baptisée Chasm-1, a tranché l’épaisse couche de glace dans sa totalité.
Le vêlage était attendu depuis un moment et n’a surpris personne. Un iceberg de taille semblable, l’A74, s’est détaché de la plate-forme glaciaire en février 2021. Selon le British Antarctic Survey (BAS), l’A74, qui mesurait 1 270 kilomètres carrés, est parti à la dérive dans la mer de Weddell.
Le plus grand iceberg jamais enregistré, le B-15, s’est détaché de la plate-forme de Ross en mars 2000. Il mesurait 11 000 kilomètres carrés, soit à peu près de la même taille que la Jamaïque.
On ne sait pas encore si le dernier vêlage aura un impact sur la plate-forme glaciaire proprement dite. Cela dépendra de la façon dont le reste de cette plate-forme réagira aux changements qui viennent de se produire. Les scientifiques pensent que l’impact sera probablement faible et mettra un certain temps à se faire sentir. Une partie de la plate-forme glaciaire, soit environ la moitié de la taille du nouvel iceberg, reste exposée au vêlage. Le reste sera relativement peu affecté.
Le changement climatique et le réchauffement de l’atmosphère ont entraîné de nombreux cas de fonte prématurée des glaciers et des calottes glaciaires, mais les scientifiques s’accordent à dire que le dernier vêlage fait partie du cycle naturel de la calotte glaciaire de l’Antarctique. En effet, la plate-forme de Brunt avait atteint une taille encore jamais observée ces dernières années et un vêlage était donc très probable.
Le nouvel iceberg, baptisé A-81 par le U.S. National Ice Center, suivra probablement la trajectoire de l’A74 et partira à la dérive dans l’océan.
La plate-forme glaciaire de laquelle l’A-81 s’est détaché est le site de la station de recherche Halley du British Antarctic Survey, où les scientifiques étudient la météo spatiale et les processus atmosphériques. La station a été déplacée en 2016 lorsqu’une fracture est apparue dans la glace, avec le risque que la station parte dans l’Océan Austral sur un iceberg. La station n’aurait toutefois pas été affectée par le détachement de l’iceberg le 22 janvier 2023.
Source : British Antarctic Survey.

———————————————-

A huge iceberg twice the size of New York City has broken off from an ice shelf in Antarctica.

The iceberg, which has an area of nearly 1,600 square kilometers finally broke away from the Brunt ice shelf on January 22nd, 2023. This calving occurred when a crack called Chasm-1 fully broke through the entire layer of ice.

The breakaway of this section had been expected for a while and did not come as a surprise. A similarly sized iceberg, named A74, broke off from the ice shelf in February 2021. According to the British Antarctic Survey (BAS), A74, which measured 1,270 square kilometers, has now drifted into the Weddell Sea.

The largest iceberg ever recorded was named B-15, and broke off from Ross Ice Shelf in March 2000 measuring a massive 11,000 square kilometers, about the same size as the island of Jamaica.

Whether this calving has any impact on the ice sheet itself will depend upon how the rest of the shelf reacts to the changes that have just occurred. In any event the impact is likely to be small and will take some time to be felt. At least one part of the remaining shelf, about half of the size of the new iceberg, is now vulnerable to calving. The rest of the ice sheet will be relatively unaffected.

While climate change and the warming atmosphere have led to many cases of glaciers and ice sheets melting prematurely, experts agree that this particular calving is part of the natural cycle of the Antarctic ice sheet. Indeed, the Brunt ice shelf had reached a larger size than it had for many years, meaning that a significant calving was due.

The new iceberg, named A-81 by the U.S. National Ice Center, is likely to follow the path of A74 as it drifts into the ocean.

The ice shelf from which A-81 broke away is the location of the BAS’ Halley Research Station, where scientists study space weather and atmospheric processes. It was relocated in 2016 as the chasm along which the break occurred widened and was reportedly not affected by Sunday’s iceberg break-off.

Source : British Antarctic Survey.

Image du nouvel iceberg acquise le 24 janvier 2023 par le satellite Terra/MODIS de la NASA

Déplacement d’un module de la station du BAS en 2016 (Crédit photo: BAS)

La menace de l’Antarctique et du glacier Thwaites (suite) // The threat of Antarctica and the Thwaites Glacier (continued)

Au cours des derniers siècles, la calotte glaciaire de l’Antarctique était restée stable et pratiquement en équilibre jusque dans les années 1980. C’est alors que des changements ont commencé à se produire lentement.
Aujourd’hui, la situation est différente et inquiétante. Alors que l’air et l’océan se réchauffent autour du continent antarctique, des zones de calotte glaciaire qui étaient stables depuis des milliers d’années se fracturent, s’amincissent, fondent et, dans certains cas, disparaissent. Ces événements envoient au monde un très fort signal d’alerte : si une partie de la calotte glaciaire de l’Antarctique, même très petite, venait à disparaître dans la mer, l’impact sur les côtes dans monde serait sévère.
Regardez cette vidéo en accéléré montrant la perte de glace en Antarctique entre 2002 et 2020 :
https://youtu.be/AmSovbt5Bho
Pour comprendre ce qui se passe en ce moment en Antarctique, il faut regarder ce qui se passe sous la calotte glaciaire. Des données récentes fournies par des survols de la région et par des approches terrestres ont permis d’établir une sorte de carte du continent sous la glace. Celle carte révèle deux paysages très différents, séparés par la Chaîne Transantarctique.
Dans l’Antarctique de l’Est, le continent est accidenté et sillonné par plusieurs petites chaînes de montagnes. Certaines d’entre elles possèdent des vallées creusées par les tout premiers glaciers qui se sont formés en Antarctique il y a 30 millions d’années. La majeure partie du substrat rocheux de l’Antarctique de l’Est se trouve au-dessus du niveau de la mer.
Dans l’Antarctique occidental, le socle rocheux est très différent, avec des parties beaucoup plus profondes. Cette zone constituait autrefois le fond de l’océan, une région où le continent était étiré et divisé en blocs plus petits séparés par des fonds marins profonds. De grandes îles constituées de chaînes de montagnes volcaniques sont aujourd’hui reliées entre elles par l’épaisse couverture de glace. Toutefois, la glace de l’Antarctique occidental est plus chaude et se déplace plus rapidement.
Il y a à peine 120 000 ans, l’Antarctique occidental était probablement un océan. Il est important de le savoir car les températures actuelles se rapprochent rapidement des températures d’il y a des millions d’années. Si l’on prend en compte que la calotte glaciaire de l’Antarctique occidental avait disparu dans le passé, la situation actuelle sous l’effet du réchauffement climatique devient particulièrement préoccupante.
Le glacier Thwaites se trouve sur la côte ouest de l’Antarctique. Son front de 120 km de large est le plus large sur Terre. Le glacier couvre une zone presque aussi grande que l’Idaho aux États-Unis. Les données satellites nous indiquent que le glacier est dans la première phase d’un recul de grande ampleur. Son épaisseur diminue parfois d’un mètre chaque année. D’énormes fractures se sont formées sur la côte, avec la libération de nombreux grands icebergs. Le glacier avance à raison de plus de 1,6 km par an. Cette vitesse a presque doublé au cours des trois dernières décennies.
Les premières mesures de l’épaisseur de la glace sous la surface de l’océan, à l’aide d’un écho-sondage radio, ont montré que le centre de l’Antarctique occidental repose sur un socle rocheux jusqu’à 2,5 km sous le niveau de la mer. La zone côtière est moins profonde, avec quelques montagnes et des zones plus élevés, mais on observe un vaste espace entre les montagnes près de la côte. C’est là que le glacier Thwaites rencontre la mer.
Le Thwaites n’avait pas beaucoup évolué depuis la première cartographie établie dans les années 1940. Lorsque le glacier a récemment commencé à reculer, les scientifiques ont tout d’abord pensé que c’était à cause d’un air plus chaud et de la fonte en surface. En fait, la cause des changements intervenus sur le Thwaites, telle qu’elle apparaît dans les données satellitaires, est difficilement décelable depuis la surface. Sous la glace, au point où la calotte glaciaire remonte vers la surface et commence à s’avancer au-dessus de l’océan pour former une plate-forme glaciaire, la cause du recul devient évidente : l’eau chaude de l’océan érode la base de la glace.
Il suffit de regarder cette vidéo en accéléré pour comprendre ce qui se passe sous le glacier Thwaites :
https://youtu.be/MR6-sgRqW0k
La plate-forme glaciaire retient la calotte et le glacier en amont. Mais la pression de cette glace brise lentement la plate-forme. Comme une planche qui se fend sous une pression trop forte, la plate-forme glaciaire développe d’énormes fractures. Lorsqu’elle cédera – la cartographie des fractures et la vitesse de progression du glacier montrent que c’est l’affaire de quelques années – la glace pourra s’écouler plus rapidement.
Selon les scientifiques qui étudient l’Antarctique occidental, cette partie du continent pourrait bientôt amorcer une fonte pluriséculaire qui ajoutera jusqu’à 3 mètres au niveau de la mer. Dans le processus, la vitesse d’élévation du niveau de la mer augmentera très vite et posera de gros problèmes aux populations vivant dans les villes côtières.

Source, Université du Colorado à Boulder, via The Conversation.

—————————————–

For most of the past few centuries, the Antarctic ice sheet had been stable and had been nearly in balance until as recently as the 1980s. Then changes in the ice happened slowly.

Today, the situation is very different. As the surrounding air and ocean warm, areas of the Antarctic ice sheet that had been stable for thousands of years are breaking, thinning, melting, or in some cases collapsing. These events send the world send a powerful reminder : If even a small part of the Antarctic ice sheet were to completely crumble into the sea, the impact for the world’s coasts would be severe.

Just look at this time lapse video showing Antarctic ice mass loss between 2002 and 2020 :

https://youtu.be/AmSovbt5Bho

To understand what is currently happening in Antarctica, one needs to have a look at what is happening beneath the ice sheet. Recent data from hundreds of airplane and ground-based studies have given us a kind of map of the continent below the ice. It reveals two very different landscapes, divided by the Transantarctic Mountains.

In East Antarctica, the continent is rugged and furrowed, with several small mountain ranges. Some of these have alpine valleys, cut by the very first glaciers that formed on Antarctica 30 million years ago. Most of East Antarctica’s bedrock sits above sea level.

In West Antarctica the bedrock is far different, with parts that are far deeper. This area was once the ocean bottom, a region where the continent was stretched and broken into smaller blocks with deep seabed between. Large islands made of volcanic mountain ranges are linked together by the thick blanket of ice. But the ice here is warmer, and moving faster.

As recently as 120,000 years ago, this area was probably an open ocean. This is important because our climate today is fast approaching temperatures like those of a few million years ago. The realization that the West Antarctic ice sheet was gone in the past is the cause of great concern in the global warming era.

The Thwaites Glacier lies along West Antarctica’s coast. It is the widest glacier on Earth, at 120 km across, covering an area nearly as large as Idaho in the U.S. Satellite data tell us that the glacier is in the early stages of a large-scale retreat. The height of the surface has been dropping by up to one meter each year. Huge cracks have formed at the coast, and many large icebergs have been set adrift. The glacier is flowing at over 1.6 km per year, and this speed has nearly doubled in the past three decades.

Some of the first measurements of the ice depth, using radio echo-sounding, showed that the center of West Antarctica had bedrock up to 2.5 km below sea level. The coastal area was shallower, with a few mountains and some higher ground, but a wide gap between the mountains lay near the coast. This is where Thwaites Glacier meets the sea.

Until recently, Thwaites had not changed a lot since it was first mapped in the 1940s. When the glacier started to retreat, scientists thought it was a result of warmer air and surface melting. But the cause of the changes at Thwaites seen in satellite data is not so easy to spot from the surface. Beneath the ice, however, at the point where the ice sheet first lifts off the continent and begins to jut out over the ocean as a floating ice shelf, the cause of the retreat becomes evident. Here, warm ocean water is eroding the base of the ice.

Look at this time lapse video showing what is happening beneath the Thwaites Glacier :

https://youtu.be/MR6-sgRqW0k

The ice shelf is one of the restraining forces holding the ice sheet back. But pressure from the land ice is slowly breaking this ice plate. Like a board splintering under too much weight, it is developing huge cracks. When it gives way – mapping of the fractures and speed of flow suggests this is just a few years away – it will be another step that allows the ice to flow faster.

According to the scientsis who are studying West Antarctica, this part of the continent could soon begin a multicentury decline that would add up to 3 meters to sea level. In the process, the rate of sea level rise would increase severalfold, posing large challenges for people living in coastal cities. Source, University of Colorado Boulder, through The Conversation.

 

Carte montrant la perte de glace en Antarctique (Source : NASA)

Le trou dans la couche d’ozone diminue // The hole in the ozone layer is shrinking

On peut lire ces jours-ci dans toute la presse de nombreux articles nous informant que le trou dans la couche d’ozone rétrécit, ce qui est une bonne nouvelle car notre planète reçoit ainsi moins de lumière ultraviolette nocive.
Le site internet du programme d’observation Copernicus donne plus de détails. Les données du Copernicus Atmosphere Monitoring Service (CAMS)service de surveillance de l’atmosphère – sur la réduction du trou d’ozone en Antarctique en 2022 mettent en évidence un comportement inhabituel de ce phénomène. Non seulement la réduction du trou dans la couche d’ozone a pris plus de temps que d’habitude, mais elle a été relativement importante. Ceci est particulièrement remarquable car ce comportement n’est pas propre à l’année 2022 ; il est semblable à ce que l’on a observé en 2020 et 2021 et diffère de ce qui avait été observé au cours des 40 années précédentes.
Le trou d’ozone antarctique commence généralement à s’agrandir au printemps dans l’hémisphère sud (fin septembre) et commence à se réduire en octobre, avant de se refermer généralement en novembre. Néanmoins, les données CAMS des trois dernières années montrent un comportement différent : pendant cette période, le trou d’ozone est resté plus important que d’habitude tout au long du mois de novembre et s’est terminé à la fin du mois de décembre.
S’agissant des causes de ce nouveau comportement, Copernicus explique que plusieurs facteurs influencent l’étendue et la durée du trou d’ozone chaque année, en particulier la force du vortex polaire et les températures dans la stratosphère. Les trois dernières années ont été marquées par un puissant vortex et de basses températures, ce qui a conduit à des épisodes consécutifs de trous importants et de longue durée dans la couche d’ozone. Il existe un lien possible avec le changement climatique, qui tend à refroidir la stratosphère. Il est tout à fait surprenant d’observer consécutivement trois trous inhabituels dans la couche d’ozone.
La date de la fermeture du trou dans la couche d’ozone en 2020 et 2021 a eu lieu respectivement le 28 et le 23 décembre, et la situation en 2022 a été identique.
Les trois derniers trous dans la couche d’ozone ont non seulement été exceptionnellement longs en durée, mais ils ont également eu une taille relativement importante. Au cours de ces trois années, le trou a dépassé 15 millions de km2 – la taille de l’Antarctique – pendant la majeure partie du mois de novembre.
Malgré la taille relativement importante de ces récents trous dans la couche d’ozone, il existe des signes persistants que la situation est en voie d’amélioration. Grâce à la mise en œuvre du Protocole de Montréal, les concentrations de substances nocives pour la couche d’ozone, les CFC en particulier, ont diminué lentement mais régulièrement depuis la fin des années 1990. On peut s’attendre à ce que dans 50 ans leurs concentrations dans la stratosphère soient revenues aux niveaux préindustriels et qu’il n’y ait plus de trous dans la couche d’ozone, quelles que soient les conditions de vortex polaire et de température dans la stratosphère.

—————————————-

One can read these days in the news papers numeroius articles informing us that the hole in the ozone layer is shrinking, which is good news as less danderous ultraviolet light is reaching Earth’s surface.

The website of the Copernicus Earth observation programme gives more information about this phenomenon. Data from the Copernicus Atmosphere Monitoring Service (CAMS) on the closing of the 2022 Antarctic ozone hole highlights some unusual behaviour. Not only did the closure of the ozone hole take longer than usual, but it was relatively large. This is particularly remarkable given that this behaviour is not unique to this year, but it is similar to ozone holes of 2020 and 2021 and differs from what had been observed in the previous 40 years.

The Antarctic ozone hole usually starts opening during the Southern Hemisphere spring (in late September) and begins to decline during October, before typically coming to an end during November. Nonetheless, the CAMS data from the last three years show a different behaviour: during this time, the ozone hole has remained larger than usual throughout November and coming to an end well into December. .

As for the causes of this new behaviour ? Copernicus explains that there are several factors influencing the extent and duration of the ozone hole each year, particularly the strength of the Polar vortex and the temperatures in the stratosphere. The last three years have been marked by strong vortices and low temperatures, which has led to consecutive large and long-lasting ozone hole episodes. There is a possible connection with climate change, which tends to cool the stratosphere. It is quite unexpected though to see three unusual ozone holes in a row.

The date of the ozone hole closure in 2020 and 2021 was December 28th and December 23rd respectively, and 2022 was similar. The last three ozone holes have been not only exceptionally persistent, but also had a relatively large extension. During these three years the ozone hole has been above the 15 million km2 (similar to the size of Antarctica) during most of November.

However, despite these recent fairly large ozone holes, there are consistent signs of improvement of the ozone layer. Thanks to the implementation of the Montreal Protocol, the concentrations of Ozone Depleting Substances (ODS) have been slowly but steadily declining since the late nineties. It is expected that in 50 years their concentrations in the stratosphere will have returned to the pre-industrial levels and ozone holes will no longer be experienced regardless of Polar vortex and temperature conditions.

Evolution du trou dans la couche d’ozone sous le 60ème parallèle depuis 1979 (Source : CAMS)