Réchauffement climatique : Les données infrarouges confirment les relevés au sol // Climate change : Infrared data confirms ground surveys

L’excellent site « global-climat » nous apprend qu’une nouvelle étude effectuée par deux scientifiques de la NASA montre les résultats des mesures infrarouges de température de la surface de la Terre de 2003 à 2017 effectuées par le système AIRS (Atmospheric Infrared Sounder).

Les mesures infrarouges ont été comparées à des analyses d’anomalies de la température de surface effectuées par des stations au sol et à la surface des mers, principalement par le Goddard Institute for Space Studies (GISTEMP).

L’objectif était de voir si les résultats fournis par les nombreux ensembles de données basées au sol, comme GISTEMP, pouvaient être confirmés par des sondeurs infrarouges atmosphériques du système AIRS. Ce sondeur infrarouge à haute résolution spectrale, a été lancé sur le système satellitaire d’observation de la Terre – Earth Observation System (EOS) – Aqua en 2002.

Les résultats de la comparaison des mesures effectuées par les deux systèmes ont été publiés dans Environmental Research Letters. Les scientifiques ont constaté un haut niveau de cohérence au cours des 15 dernières années.

Les données AIRS sont un complément très intéressant de celles de GISTEMP car leur résolution spatiale est supérieure et leur couverture globale est plus complète. Les deux ensembles de données démontrent que la surface de la Terre s’est réchauffée à l’échelle mondiale au cours de la période d’observation disponible, et que 2016, 2017 et 2015 ont été les années les plus chaudes, dans cet ordre.

Les données AIRS reflètent la température à la surface des océans, des terres et des régions couvertes de neige et de glace dans les tous premiers millimètres. De leur côté, les données de surface GISTEMP sont un mélange d’anomalies de données atmosphériques fournies par des stations au sol et d’anomalies de température de surface de la mer. Ces mesures sont recueillies par un réseau mondial de stations météorologiques, de navires et de bouées.

Pour comparer les deux systèmes de mesures, les chercheurs ont construit des climatologies mensuelles pour chaque mois et pour chaque ensemble de données, en faisant la moyenne des valeurs mensuelles de 2003 à 2017, avec des anomalies pour un mois donné et  pour une année donnée.

Jusqu’à présent, les mesures satellites publiées par l’Université d’Alabama à Huntsville (UAH) et le Remote Sensing System (RSS), qui reflétaient la température de la troposphère inférieure, n’avaient pas servi de validation directe des mesures réalisées par les stations au sol. UAH et RSS ne mesurent pas directement la température à la surface du sol, mais interprètent la température à partir du rayonnement dans la basse troposphère.

La concordance des anomalies mensuelles moyennes globales des séries temporelles AIRS et GISTEMP est très bonne, avec une corrélation temporelle de 0,92. Les données AIRS indiquent une tendance au réchauffement à court terme légèrement supérieure à celle trouvée par GISTEMP. Les tendances moyennes mondiales sur 15 ans sont de 0,24°C par décennie pour AIRS et de 0,22°C par décennie pour GISTEMP. Les données GISTEMP des stations météorologiques et les mesures de la surface de l’océan ont l’avantage de remonter au 19ème siècle, ce qui permet des estimations du changement de température sur le long terme.

La comparaison entre AIRS et GISTEMP montre que les mesures à la surface sous-estiment peut-être les changements de température dans l’Arctique. Cela pourrait signifier que le réchauffement est plus rapide que prévu aux pôles. Les tendances de la température de surface fournies par les données AIRS indiquent que les mers de Barents et de Kara ont enregistré le réchauffement le plus important au cours des 15 dernières années, avec des tendances supérieures à 2,5°C par décennie.

Source : global-climat, NASA.

—————————————————–

One can read on the excellent website “global-climat” that a new study by two NASA scientists shows the results of measurements of the Earth’s surface temperature taken by the AIRS – Atmospheric Infrared Sounder – satellite from 2003 to 2017.
Infrared measurements were compared to analyses of surface temperature anomalies performed by ground and sea surface stations, mainly the Goddard Institute for Space Studies (GISTEMP).
The objective was to see if the results provided by many ground-based data sets, such as GISTEMP, could be confirmed by Atmospheric Infrared Sounders (AIRS). AIRS, a spectral high resolution infrared sounder, was launched on the Earth Observation System (EOS) – Aqua satellite in 2002.
The results of the comparison of the measurements made by the two systems have been published in Environmental Research Letters. Scientists have found a high level of consistency over the past 15 years.
The AIRS data is a very interesting complement to GISTEMP data because their spatial resolution is higher and their global coverage is more complete. Both datasets show that the Earth’s surface warmed globally during the available observation period, and that 2016, 2017 and 2015 were the warmest years, in that order.
AIRS data reflect the temperature of ocean, land and snow and ice covered surfaces in the very first millimetres. For their part, GISTEMP surface data is a mixture of atmospheric data anomalies provided by ground stations and sea surface temperature anomalies. These measurements are collected by a global network of weather stations, ships and buoys.
To compare the two measurement systems, researchers constructed monthly climatologies for each month and for each data set, averaging the monthly values ​​from 2003 to 2017, with anomalies for a given month and for a given year.
So far, the satellite measurements published by the University of Alabama at Huntsville (UAH) and the Remote Sensing System (RSS), which reflected the temperature of the lower troposphere, had not served as direct validation of measurements made by the ground stations. UAH and RSS do not directly measure the temperature at the soil surface, but interpret the temperature from radiation in the lower troposphere.
The concordance of the global mean monthly anomalies of the AIRS and GISTEMP time series is very good, with a temporal correlation of 0.92. The AIRS data indicate a short-term warming trend slightly higher than that found in GISTEMP. Global average trends over 15 years are 0.24°C per decade for AIRS and 0.22°C per decade for GISTEMP. GISTEMP data from meteorological stations and ocean surface measurements have the advantage of going back to the 19th century, which allows estimates of temperature change over the long term.
The comparison between AIRS and GISTEMP shows that surface measurements may have underestimated temperature changes in the Arctic. This could mean that warming is faster than expected at the poles. The surface temperature trends provided by the AIRS data indicate that the Barents and Kara seas recorded the greatest warming over the past 15 years, with trends greater than 2.5°C per decade.
Source: global-climat, NASA.

Courbe montrant la cohérence entre les relevés infrarouges satellitaires AIRS et les systèmes au sol comme GISTEMP (Source : Susskind et al 2019 (Environmental Research Letters)

– HadCRUT: Combinaison des mesures de température de la surface de la mer par le Hadley Centre et des mesures de température à la surface du sol par l’Unité de Recherche Climatique (CRU) de l’Université d’East Anglia.

– ECMWF (European Centre for Medium-Range Weather Forecasts) : Centre européen pour les prévisions météorologiques à moyen terme (CEPMMT).

 

 

La grande vitesse des coulées pyroclastiques // The high speed of pyroclastic flows

Dans un article publié dans la revue Nature Geoscience, des chercheurs confirment les conclusions d’études précédentes à propos des coulées pyroclastiques. Ils expliquent qu’ils ont découvert que les matériaux à haute température émis par un volcan pendant une éruption génèrent une couche d’air entre le sol et une coulée pyroclastique, ce qui permet à cette dernière de se déplacer en atteignant des vitesses extrêmes et en détruisant tout sur son passage.

Les coulées pyroclastiques sont constituées d’un mélange de lave à très haute température, de pierre ponce, de cendre et de gaz volcaniques. Elles peuvent atteindre des températures de 1000 degrés Celsius et, dans des cas extrêmes, dévaler les pentes des volcans à plus de 600 kilomètres à l’heure. Elles sont responsables d’environ 50% de tous les décès provoqués par les éruptions volcaniques dans le monde. Des coulées pyroclastiques ont détruit Pompéi, Herculanum et Stabies lorsque le Vésuve est entré en éruption en l’an 79. Plus récemment, elles ont causé la mort de centaines de personnes sur les pentes du Fuego (Guatemala) en juin 2018.
Les coulées pyroclastiques se divisent en général en deux parties: 1) un flux de fragments de roches à très haute température qui se déplace à la surface du sol, et 2) un nuage de cendres à haute température qui s’élève au-dessus. Dans l’étude publiée dans Nature Geoscience, des chercheurs de l’Université Massey de Nouvelle-Zélande ont tenté de comprendre pourquoi la partie inférieure d’une coulée pyroclastique peut se déplacer aussi rapidement.
Pour ce faire, ils ont réalisé une expérience et déversé 6 tonnes de matériaux pyroclastiques à une température de 400 degrés Celsius dans une structure de leur propre fabrication située dans une chaufferie désaffectée. Les chercheurs ont enregistré l’écoulement des matériaux à l’aide de caméras haute vitesse, ce qui leur a permis ensuite d’analyser avec précision le comportement des matériaux au fur et à mesure de leur écoulement.

Les résultats de l’expérience montrent que les écoulements pyroclastiques génèrent leur propre lubrification sur une couche d’air. Une zone de matériaux volcaniques sous haute pression se forme vers la base de la coulée. L’air est repoussé vers le bas sous l’effet de la pression, ce qui crée comme un matelas d’air à la surface duquel les matériaux peuvent s’écouler rapidement.
Cette étude pourrait aider les autorités à mieux comprendre les dangers posés par les volcans et prévoir leur comportement. Les résultats pourraient avoir des applications dans d’autres domaines comme les avalanches et les glissements de terrain. Depuis longtemps, les volcanologues se demandent pourquoi les coulées pyroclastiques sont capables de se déplacer sur de longues distances. En effet, on a trouvé des dépôts de coulées à des centaines de kilomètres du volcan source ; d’autres ont franchi des obstacles topographiques  tels que des chaînes de montagnes ou des étendues d’eau. La dernière étude fournit également des informations mathématiques importantes qu’il faudrait intégrer à la modélisation des courants de densité pyroclastique (PDC). Ces courants se déplacent généralement une centaine de kilomètres à l’heure, mais on sait qu’ils ont atteint des vitesses allant jusqu’à 600 kilomètres à l’heure sur des terrains accidentés et jusqu’à de grandes distances du volcan source. La dernière étude tend à montrer que cette haute vitesse est obtenue par lubrification grâce à la couche d’air à la base des coulées pyroclastiques.
Source: Presse scientifique internationale.

——————————————–

In a paper published in Nature Geoscience, researchers confirm the results of previous studies. They explain that they have discovered that the high temperature material spewed from a volcano during eruptions generates a layer of air between it and the ground, allowing a pyroclastic flow to surf along at extreme speeds, destroying everything in its path.

Pyroclastic flows are made up of a mix of hot lava, pumice, ash and volcanic gases. They can reach temperatures of up to 1,000 degrees Celsius and can, in extreme cases, move down the slopes of volcanoes at over 600 kilometres per hour. They are responsible for around 50 percent of all deaths from volcanic eruptions globally. Pyroclastic flows destroyed the ancient cities of Pompeii, Herculaneum and Stabies when Mount Vesuvius erupted in A.D. 79. More recently, they caused the deaths of hundreds of persons on the slopes of Fuego Volcano (Guatemala) in June 2018.

Pyroclastic flows are normally split into two parts : 1) a stream of hot rock fragments that move along the ground and 2) a hot cloud of ash that rises above. In the study published in Nature Geoscience, researchers from New Zealand’s Massey University tried to understand how the lower level of material is able to move so fast.

To do this, they carried out an experiment by releasing up to 6 tons of 400-degree Celsius pyroclastic material down a makeshift unit inside a disused boiler house. The researchers recorded the flow of the material with high-speed videos, allowing them to analyze exactly what was happening to it as it rolled down.

Results showed that the pyroclastic flows generate their own air lubrication. An area of high-pressure volcanic material forms toward the base of the flow. The air is forced downward as a result of the pressure, creating a near-frictionless layer along which the material can flow quickly.

This study could help authorities better understand the hazards posed by volcanoes, and how to plan for them. The results could have implications for other events, including avalanches and fast-flowing landslides. A long-standing puzzle for volcanologists has been the question of why pyroclastic flows are able to travel so far. Indeed, one can find flow deposits hundreds of kilometres from the source volcano, and others that have crossed significant topographic or other barriers, such as mountain ranges or open bodies of water. Thus, the research also provides important mathematical information that should be incorporated into the modelling of pyroclastic density currents (PDCs). PDCs typically travel around 100 kilometres per hour but are known to have reached speeds up to more than 600 kilometres per hour over rough terrain large distances from the volcano.The research suggests that this high mobility is through air lubrication at the base of the flows.

Source: International scientific press.

°°°°°°°°°°°°°

Voici une vidéo montrant le déplacement des coulées pyroclastiques sur l’île de Montserrat, pendant l’éruption du volcan Soufriere Hills en 1995. J’ai toujours été impressionné par le glissement de l’écoulement pyroclastique à la surface de l’océan.

https://youtu.be/GeghNYm_03A

°°°°°°°°°°°°°

Coulées pyroclastiques sur le Mayon aux Philippines (Crédit photo: Wikipedia)

A propos des séismes lents // About slow-slip earthquakes

Dans une note intitulée « Les séismes lents du Kilauea, publiée le 28 mars 2018, j’expliquais que des séismes sont enregistrés périodiquement sur le flanc sud du Kilauea. Le HVO les attribue au glissement lent de l’édifice volcanique dans l’Océan Pacifique. Les Anglosaxons les ont baptisés « slow-slip earthquakes », « séismes lents » en français. Ces événements ne sont pas l’apanage du Kilauea ; on les observe ailleurs dans le monde.

Les scientifiques néo-zélandais de GNS Science (à l’origine Institute of Geological and Nuclear Sciences) surveillent un événement sismique lent qui a débuté fin mars 2019 près de Gisborne, au large de la côte est de l’Ile du Nord. Une séquence sismique semblable a déjà été observée dans ce même secteur en mars 2010.
Les séismes lents sont assez fréquents dans cette partie de la Nouvelle-Zélande, en raison de la subduction de la Plaque Pacifique qui se déplace vers l’ouest et plonge sous la Plaque Australienne.

En cliquant sur le lien ci-dessous, vous aurez des explications sur les séismes lents. Le document est en anglais. Vous trouverez ci-dessous une traduction en français pour vous aider à comprendre cet important chapitre de la sismologie.

https://youtu.be/xgk2zBvdOgw

—————————————–

In a post entitled « Kilauea Volcano Slow Earthquakes, published on March 28th, 2018, I explained that earthquakes are recorded periodically on the southern flank of Kilauea. HVO attributes them to the slow slide of the volcanic edifice in the Pacific Ocean. Anglosaxons called them « slow-slip earthquakes », « séismes lents » in French. These events are not exclusive to Kilauea; they are observed elsewhere in the world.

GNS scientists are monitoring a slow-slip event that started at the end of March 2019 near Gisborne, off the east coast of North Island, New Zealand. A similar seismic event was observed in the same area in March 2010.

Slow-slip events are quite common in this part of New Zealand, due to the subducting Pacific Plate moving westward under the Australian Plate,

By clicking on this link, you will learn more about slow-slip earthquakes :

https://youtu.be/xgk2zBvdOgw

°°°°°°°°°°°°°°°°°°°°

Définition d’un séisme lent.

En Nouvelle Zélande, les plaques tectoniques Pacifique et Australienne entrent en contact le long d’une série de lignes de failles. Au niveau de l’Ile du Nord, dans un processus de subduction, la plaque Pacifique plonge en direction de l’ouest sous la côte orientale de l’Ile du Nord, au niveau de la Fosse et Zone de Subduction de Hikurangi qui constitue la faille la plus importante et la plus active de Nouvelle Zélande. Les deux plaques tectoniques se déplacent l’une vers l’autre le long de cette faille. Dans la partie la plus profonde de la Zone de Subduction de Hikurangi, les roches sont plus chaudes et les deux plaques peuvent se déplacer l’une contre l’autre lentement et de manière continue. En revanche, à des profondeurs moindres, les plaques ont des bords moins réguliers et leur frottement provoque par moment des blocages. Les contraintes s’accumulent alors dans la zone de blocage. Au bout de quelques années, la situation se débloque pour un temps et c’est alors que se produit un séisme lent avec libération des contraintes et de l’énergie qui s’étaient accumulées.

Un séisme lent ressemble à un séisme classique dans la mesure où il y a libération d’énergie le long d’une zone de faille, mais cette libération d’énergie se fait sur des semaines ou des mois, alors que pour un séisme classique c’est une affaire de secondes. Les systèmes GPS renseignent sur le déplacement du sol.

Les séismes sur les zones de subduction.

Parfois, le mouvement des plaques n’est pas lent, mais soudain et rapide, ce qui provoque des séismes. De puissants séismes peuvent se produire après que deux plaques soient restées bloquées pendant longtemps, des siècles ou des millénaires. Au cours de ce laps de temps de blocage très long, il s’accumule suffisamment de contraintes et d’énergie le long de la faille jusqu’au moment où une rupture se produit. Les plaques se déplacent alors rapidement l’une contre l’autre en provoquant un séisme.

Un déplacement lent des plaques peut-il provoquer un séisme majeur ?

Les déplacements lents des plaques tectoniques se produisent souvent en limite de plaques dans des zones où se déclenchent les séismes classiques. Les scientifiques cherchent à savoir dans quelle mesure un déplacement lent des plaques peut contribuer à augmenter les contraintes dans la zone de blocage entre deux plaques et si cela peut avoir une influence sur les ruptures de plaques qui déclenchent les puissants séismes.

Le jour où les scientifiques parviendront à comprendre la relation entre le déplacement lent des plaques et le déclenchement des séismes, un grand pas aura été franchi dans le domaine de la prévision sismique. Il est utile de noter que de nombreux déplacements lents de plaques en Nouvelle Zélande n’ont pas déclenché de puissants séismes.

Sur le document, au bout de 2’58’’, on nous montre sur une carte une importante zone de blocage qui recouvre la partie centrale et inférieure de l’Ile du Nord de la Nouvelle Zélande. C’est là que s’accumulent les contraintes et l’énergie susceptibles de provoquer un nouveau séisme à l’avenir. A proximité de cette zone, on peut en voir une autre où se produit un déplacement lent des plaques.

C’est le rôle de GNS Science d’étudier ces phénomènes qui se produisent en Nouvelle Zélande, mais aussi ailleurs dans le monde.

Capture d’écran de trois images de la vidéo. Elles illustrent le frottement des plaques tectoniques, leur blocage, et l’accumulation de contraintes et d’énergie (Source : GNS Science).

Les glaciers rejettent des résidus radioactifs ! // Glaciers release radioactive residues!

On le sait depuis longtemps : Les glaciers sont de précieux indicateurs de l’histoire de notre planète. Ils permettent en particulier de dater des événements géologiques majeurs comme les éruptions volcaniques. De temps à autre, ils nous rendent les corps de personnes victimes d’une catastrophe aérienne ou d’alpinistes ayant chuté dans des crevasses en escaladant l’Everest.

Le site de la chaîne de télévision BFMTV nous apprend que des retombées radioactives d’accidents nucléaires civils et d’essais militaires sont emprisonnées dans les glaciers à travers le monde. Les chercheurs avertissent que ces résidus risquent fort d’être libérés par la fonte de la glace liée au réchauffement climatique.

Une équipe internationale de scientifiques a cherché la présence de retombées radioactives dans les sédiments à la surface de glaciers dans l’Arctique, en Islande, dans les Alpes, le Caucase, l’Antarctique et l’ouest du Canada. Ces chercheurs ont découvert des résidus radioactifs sur les 17 sites étudiés, souvent à des concentrations au moins 10 fois supérieures aux niveaux relevés ailleurs. Une scientifique britannique a expliqué que les niveaux mesurés sont les plus élevés dans un environnement en dehors des zones d’exclusion nucléaires

Il est facile de comprendre pourquoi les glaciers conservent ces résidus radioactifs. Quand ils sont relâchés dans l’atmosphère, ils retombent sur terre par le biais des pluies acides et peuvent être absorbés par les plantes et le sol. En revanche, quand ils tombent sous forme de neige et s’installent sur la glace, ils forment des sédiments plus lourds, qui s’accumulent dans les glaciers.

Les scientifiques donnent l’exemple de l’accident de Tchernobyl en 1986 qui avait généré des nuages radioactifs contenant notamment du césium, et provoqué une contamination à travers l’Europe du Nord. Dans le cas de Tchernobyl, les éléments radioactifs sont retombés sous forme de pluie ou de neige. Dans ce dernier cas, ils sont restés dans la glace pendant des décennies, et avec la fonte des glaciers liée au réchauffement, ils se déversent maintenant dans les rivières.

L’équipe scientifique a détecté quelques résidus de Fukushima, mais une grande partie des éléments issus de cet accident de 2011 ne se sont pas encore agglutinés dans les sédiments des glaciers.

Sur plusieurs des sites, les chercheurs ont également retrouvé des traces d’essais nucléaires, en particulier ceux qui ont été effectués des années 1950 et 1960. Une scientifique a expliqué qu’en étudiant une carotte de sédiments, on voit clairement un pic au moment de Tchernobyl, mais aussi un pic relativement précis autour de 1963, période intense d’essais nucléaires.

Le risque aujourd’hui, c’est qu’avec le réchauffement climatique et la fonte de la glace, on assiste à l’entrée dans la chaîne alimentaire d’un des résidus potentiellement les plus dangereux, l’américium, issu de la dégradation du plutonium et qui a une demi-vie de 400 ans, contre 14 ans pour le plutonium.

Source : BFMTV.

—————————————————

We have known for a long time that glaciers are precious indicators of the history of our planet. In particular, they allow to date major geological events such as volcanic eruptions. From time to time, they release the bodies of people who have fallen victim to a plane crash or mountaineers who have fallen into crevasses while climbing Mount Everest.
The BFMTV television site tells us that radioactive fallout from civilian nuclear accidents and military tests are trapped in glaciers around the world. The researchers warn that these residues are likely to be released by the melting of ice due to global warming.
An international team of scientists has investigated the presence of radioactive fallout in glacial surface sediments in the Arctic, Iceland, the Alps, the Caucasus, Antarctica and western Canada. These researchers found radioactive residues at the 17 sites they studied, often at concentrations at least 10 times higher than levels found elsewhere. A British scientist explains that measured levels are highest in an environment outside nuclear exclusion zones
It is easy to understand why glaciers retain these radioactive residues. When released into the atmosphere, they fall back to earth through acid rain and can be absorbed by plants and soil. On the other hand, when they fall in the form of snow and settle on the ice, they form heavier sediments, which accumulate in the glaciers.
Scientists give the example of the Chernobyl accident in 1986 that generated radioactive clouds including cesium and caused contamination throughout northern Europe. In the case of Chernobyl, radioactive elements fell as rain or snow. In the latter case, they remained in the ice for decades, and with the melting glaciers associated with global warming, they now flow into the rivers.
The scientific team has detected some Fukushima residues, but much of the evidence from this 2011 accident has not yet accumulated in the glacial sediments.
On several of the sites, the researchers also found traces of nuclear tests, in particular those that were carried out in the 1950s and 1960s. A scientist explained that by studying a core of sediments, one clearly sees a peak at the moment of the Chernobyl accident, but also a relatively accurate peak around 1963, which was an intense period of nuclear testing.
The risk today is that with global warming and the melting of ice, we may witness the entry into the food chain of one of the potentially most dangerous residues, americium, resulting from the degradation plutonium and which has a half-life of 400 years, compared with 14 years for plutonium.
Source: BFMTV.

Photos: C. Grandpey