Nouveau déplacement de capitale // New capital relocation

Relocaliser la capitale d’un pays semble devenir une pratique courante. Après l’Indonésie, c’est au tour de l’Iran de suivre cette tendance. Le sol sous la ville de Téhéran, la capitale iranienne, s’affaisse et l’eau potable se raréfie, menaçant la santé et la sécurité des 15 millions d’habitants de l’agglomération.
L’affaissement du sol à Téhéran s’inscrit dans une crise environnementale plus vaste qui touche la région, et c’est pour cela que le président iranien a proposé de déplacer la capitale.
Téhéran est située dans le nord de l’Iran, au pied des monts Elbourz – ou Alborz – qui la séparent de la mer Caspienne. La ville est confrontée simultanément à une pénurie d’eau et à un affaissement du sol. Une étude de 2024 a révélé que Téhéran s’affaisse de plus de 20 centimètres par an. Le prélèvement excessif d’eau souterraine épuise les nappes phréatiques et provoque cet affaissement. Le poids des villes, ainsi que d’autres facteurs comme la composition du sol, accélèrent le phénomène.

L’affaissement du sol est un problème majeur pour les grandes villes du monde entier. Ce phénomène peut endommager les infrastructures et même compromettre la sécurité des bâtiments. Le sud-est du pays, qui offrirait également un accès à l’océan Indien, est souvent évoqué comme zone de relocalisation.

Comme indiqué précédemment, il n’est pas rare qu’un pays déplace sa capitale. Jakarta, la capitale indonésienne, a été transférée à Nusantara sur l’île de Bornéo.

Le Myanmar a transféré sa capitale de Yangon à Naypyidaw en 2005. Le siège du gouvernement nigérian a été transféré de Lagos à Abuja en 1991. Les destructions de grande ampleur causées par l’ouragan Hattie en 1961 ont contraint les autorités du Belize à déplacer sa capitale de Belize City à Belmopan en 1970.
Source : The Weather Network.

Avec l’accélération du réchauffement climatique et la montée des eaux océaniques, il faut s’attendre à de nouveaux déplacements de zones habitées dans les prochaines décennies, voire les prochaines années.

°°°°°°°°°°

Conséquence du réchauffement climatique, la sécheresse et la crise de l’eau qui en découle sont si graves en Iran que le gouvernement envisage d’acheter de l’eau aux pays voisins. L’importation de produits grands consommateurs d’eau est également à l’étude. La plupart des voisins de l’Iran souffrent eux aussi de sécheresse et de pénurie d’eau, notamment l’Irak, l’Afghanistan et les régions frontalières du Pakistan. L’Arménie, au nord, dispose en revanche de réserves d’eau comparativement plus importantes.
L’Iran est l’un des pays les plus arides au monde. Ces dernières années, on a observé une baisse significative des précipitations, tandis que les sécheresses et autres phénomènes météorologiques extrêmes sont en augmentation. Les scientifiques alertent depuis des années sur la mauvaise gestion de l’agriculture iranienne. Par exemple, au lieu de s’adapter à la rareté de l’eau, les cultures particulièrement gourmandes en eau sont subventionnées. Depuis des années, le pays prélève également plus d’eau que la nature ne peut en fournir.

———————————————–

Moving a country’s capital to another place seems to be becoming a fashion. After Indonesia, it is up to Iran to enter the movement. The ground beneath Tehran, Iran’s capital, is subsiding and drinking water is increasingly scarce, risking the health and safety of 15 million people who live in the city’s metropolitan area.

Ground subsidence beneath Tehran is part of a larger environmental crisis facing the region, and the country’s president has proposed moving the capital to a different part of the country.

Tehran is located in northern Iran along the Alborz Mountains, which separate the capital from the Caspian Sea to its north. The city is facing both water scarcity and ground subsidence crises at once. A 2024 study found that Tehran is subsiding at a rate of more than 20 centimetres per year. Excessive groundwater extraction empties subterranean aquifers and causes the surface to subside. The sheer weight of cities themselves, along with other factors like soil composition, can accelerate the phenomenon.

Ground subsidence is a significant problem for major cities around the world. Subsidence beneath a city can damage infrastructure and possibly even compromise the safety of buildings themselves. A frequently mentioned area for relocation is the southeastern corner of the country, which would also provide access to the Indian Ocean.

As I put it above, it is not unprecedented for a country to switch its capital from one city to another.

Beside Jakarta, Indonesia’s capital, Myanmar moved its capital from Yangon to Naypyidaw in 2005. The seat of the Nigerian government switched from Lagos to Abuja in 1991. Widespread destruction from Hurricane Hattie in 1961 forced officials to move Belize’s capital from Belize City to Belmopan in 1970.

Source : The Weather Network.

With the acceleration of global warming and rising ocean waters, further displacement of populayed areas is to be expected in the coming decades, or even years.

°°°°°°°°°°

A consequence of global warming, drought and the ensuing water crisis are so severe in Inran that the government is planning to buy water from neighbouring countries. The import of products that consume a lot of water is also on the agenda. Most of Iran’s neighbours are also suffering from drought and water shortages, including Iraq, Afghanistan and the Pakistani border regions. Armenia in the north, on the other hand, has comparatively larger water reserves.

Iran is one of the driest countries in the world. In recent years, experts have observed a significant decline in rainfall, while droughts and other extreme weather events are on the rise. They have been warning for years that agriculture in Iran is suffering from mismanagement. For instance, instead of adapting to the water-scarce conditions, particularly thirsty crops have been subsidized. For years, the country has also extracted more water over a long period of time than nature could replenish.

L’Islande anticipe l’effondrement de l’AMOC // Iceland anticipates the collapse of the AMOC

J’ai écrit plusieurs notes sur ce blog expliquant quelles seraient les conséquences pour l’Europe de l’arrêt de la circulation méridienne de retournement de l’océan Atlantique (AMOC) dans un contexte de réchauffement climatique. Notre continent connaîtrait des hivers bien plus rigoureux qu’aujourd’hui. L’Islande, en particulier, se retrouverait alors encerclée par les glaces et frappée par de violentes tempêtes. Le gouvernement islandais vient de confirmer qu’un tel événement serait une « menace » pour sa sécurité nationale.

Avec le contexte volcanique et sismique dans lequel baigne leur vie quotidienne, les Islandais ne se montrent jamais inutilement alarmistes. Habitués à consulter les sites d’information gouvernementaux, prêts à agir en cas de SMS d’alerte reçu sur leur téléphone et confiants dans le travail du Met Office islandais, les habitants restent fidèles à leur devise non-officielle : « tout ira bien ! »

C’est dans ce contexte qu’au mois de septembre, le Conseil national de sécurité islandais a classé l’arrêt potentiel de l’AMOC comme une « menace pour la sécurité nationale ». Selon le ministre islandais de l’Environnement, de l’Énergie et du Climat, cette décision »témoigne de la gravité du problème et garantit qu’il reçoive l’attention qu’il mérite. »

Comme je l’ai déjà expliqué, l’AMOC est un système de courants marins qui achemine les eaux chaudes de l’hémisphère Sud et des tropiques vers l’hémisphère Nord, où celles-ci se refroidissent, plongent et retournent vers le sud, d’où son nom. Or, la hausse des températures mondiales perturbe le fragile équilibre entre chaleur et salinité sur lequel il repose, même si certains de ses sous-systèmes, comme le Gulf Stream, tiennent leur puissance de celle du vent.

De plus en plus d’études semblent indiquer un ralentissement de l’AMOC, bien que la probabilité et le calendrier d’un éventuel arrêt du tapis roulant restent incertains. Une chose est certaine : un basculement de ce système soumettrait l’Europe à des hivers bien plus rigoureux. L’Islande, en particulier, se retrouverait alors « au cœur d’un refroidissement régional majeur », à la fois encerclée par les glaces et frappée par de violentes tempêtes. En conséquence, un arrêt de l’AMOC ne peut plus être considéré comme un risque faible compte tenu des avancées scientifiques de ces dernières années.

Le ministre de l’Environnement, de l’Énergie et du Climat ajoute que la perte du système qui régule aujourd’hui le climat islandais conduirait en effet à dévaster les infrastructures, les transports et des secteurs économiques vitaux comme la pêche. »Le climat actuel pourrait changer si radicalement qu’il nous deviendrait impossible de nous adapter. » Concrètement, la désignation comme « menace pour la sécurité nationale » se traduira par une réponse gouvernementale « coordonnée de haut niveau » afin de déterminer comment prévenir et atténuer les pires conséquences.

D’autres pays auraient intérêt à suivre l’exemple de l’Islande en matière d’anticipation. En effet, les répercussions d’un effondrement de l’AMOC se feraient sentir dans le monde entier. Outre d’importants bouleversements climatiques et météorologiques, une élévation supplémentaire du niveau de la mer serait également à craindre, ainsi que la perturbation des moussons asiatique et africaine.

Source : Geo et presse islandaise.

———————————————

I have written several posts on this blog explaining the consequences for Europe of a collapse of the Atlantic Meridional Overturning Circulation (AMOC) in a context of global warming. Our continent would experience much harsher winters than we do today. Iceland, in particular, would find itself surrounded by ice and battered by violent storms. The Icelandic government has just confirmed that such an event would be a « threat » to its national security.
Given the volcanic and seismic context in which their daily lives unfold, Icelanders are never unnecessarily alarmist. Accustomed to consulting government news websites, ready to act upon receiving alert text messages on their phones, and confident in the work of the Icelandic Met Office, the inhabitants remain true to their unofficial motto: « Everything will be alright! »
It is in this context that, in September, the Icelandic National Security Council classified the potential collapse of the AMOC as a « threat to national security. » According to the Icelandic Minister for the Environment, Energy and Climate, this decision « demonstrates the seriousness of the problem and ensures that it receives the attention it deserves. »
As I have already explained, the AMOC is a system of ocean currents that carries warm waters from the Southern Hemisphere and the tropics to the Northern Hemisphere, where they cool, sink, and return south, hence its name. However, rising global temperatures are disrupting the delicate balance between heat and salinity on which it relies, even though some of its subsystems, such as the Gulf Stream, derive their power from the wind.
More and more studies seem to indicate a slowdown of the AMOC, although the probability and timing of a potential collapse remain uncertain. One thing is certain: a shift in this system would subject Europe to much harsher winters. Iceland, in particular, would then find itself « at the heart of a major regional cooling event, » both surrounded by ice and battered by violent storms. Consequently, a shutdown of the AMOC can no longer be considered a low risk given the scientific advances of recent years.
The Minister for the Environment, Energy and Climate adds that the loss of the system that currently regulates Iceland’s climate would indeed lead to devastating infrastructure, transportation, and vital economic sectors such as fishing. « The current climate could change so radically that it would become impossible for us to adapt. » In practical terms, the designation as a « national security threat » will result in a « high-level, coordinated government response » to determine how to prevent and mitigate the worst consequences.
Other countries should Iceland’s example in terms of preparedness. Indeed, the repercussions of an AMOC collapse would be felt worldwide. In addition to significant climate and weather disruptions, further sea-level rise is also a concern, as is the disruption of the Asian and African monsoons.
Source: Geo and Icelandic press.

Pont sur le détroit de Messine : Piqûre de rappel en Sicile

Alors que projet de construction d’un pont pour enjamber le détroit de Messine entre la Calabre et la Sicile est de plus en plus à l’ordre du jour, des voix se font régulièrement entendre pour rappeler que la région est exposée aux séismes. Les concepteurs de ce qui serait la plus long pont suspendu au monde (3666 mètres) rétorquent que la structure est capable d’encaisser une secousse de M7,1, comme celle qui a dévasté Messine en 1908.

Maquette du Ponte sullo Stretto

La construction du pont est censée débuter début 2026, mais dans les faits, la situation s’avère bien plus complexe, avec en particulier un refus de la Cour des Comptes de valider le projet. L’un des enjeux les plus cruciaux concerne le respect des réglementations environnementales et parasismiques. Plusieurs experts ont souligné ces lacunes, insistant sur le caractère non durable du projet et les risques associés. Il convient de rappeler que la zone concernée par la construction du pont a été le théâtre de l’un des pires séismes de l’histoire en Europe : le 28 décembre 1908, une violente secousse de magnitude M7,1, suivie d’un tsunami, a détruit les villes de Messine et de Reggio de Calabre. Cette catastrophe a coûté la vie à environ 80 000 personnes. Il ne faudrait pas oublier, non plus, qu’il y avait eu auparavant un séisme en Calabre méridionale en 1783, mais pour lequel aucune valeur de magnitude fiable n’a pu être obtenue.

 Image du séisme de 1908 à Messine

Aujourd’hui, certains experts redoutent que le pont s’effondre en cas de séisme d’une magnitude supérieure à M7,1 et estiment qu’il faudrait retenir l’hypothèse d’une secousse de M7,8, estimée par certains sismologues. Ces derniers font remarquer que pour un ouvrage stratégique comme le pont, il est essentiel de prévoir des marges de sécurité adéquates et ils rappellent que l’échelle de magnitude est logarithmique.
Le pont enjambant le détroit de Messine ne serait pas le premier construit en zone sismique. Au Japon, un ouvrage semblable enjambe le détroit d’Akashi, avec une travée suspendue de près de 2 km de long. En Turquie, le pont qui enjambe le détroit des Dardanelles a été construit avec une travée unique de plus de 2 km.

Alors que le débat autour du pont sur le détroit de Messine anime toujours les conversations, un séisme de magnitude M3,6 a été enregistré le 2 décembre 2025 à 23h16 dans le nord-est de la Sicile, dans la région de Messine. Selon l’INGV, l’épicentre se situait à une profondeur de 49 kilomètres, près des communes d’Itala et de Rometta. Aucun dégât ni blessé n’a été signalé.

Cette secousse est là pour rappeler que cette partie de la Sicile est particulièrement sujette aux séismes et qu’il ne faudra pas se tromper pour définir les paramètres parasismiques qui encadreront la construction du pont….si elle se fait un jour !

 Il y a un énorme fossé entre la maquette et la réalité

Source: presse italienne.

Poussière cosmique et réchauffement climatique dans l’Arctique // Cosmic dust and global warming in the Arctic

Selon la définition, la poussière cosmique – également appelée poussière extraterrestre ou interplanétaire, poussière spatiale ou poussière d’étoiles – est une poussière présente dans l’espace ou qui s’est déposée sur Terre. La plupart des particules de poussière cosmique mesurent entre quelques molécules et 0,1 mm (100 µm), comme les micrométéorites (< 30 µm) et les météoroïdes (> 30 µm). Des particules de poussière interstellaire ont été collectées par la sonde Stardust et des échantillons ont été rapportés sur Terre en 2006.
La poussière interplanétaire enrichie en hélium-3 qui s’est déposée sur les fonds marins a fourni aux climatologues un témoignage historique indispensable de l’évolution de la banquise. Grâce à cette poussière, les scientifiques espèrent pouvoir comprendre comment l’Arctique réagira à l’aggravation de la crise climatique.
La superficie de la banquise (aussi appelée glace de mer) de l’océan Arctique a diminué de plus de 42 % en raison de la hausse des températures depuis le début des observations satellitaires en 1979, et l’Arctique continue de se réchauffer plus rapidement qu’ailleurs sur Terre. D’ici quelques décennies, il se pourrait que l’océan Arctique soit libre de glace tout l’été. Outre la montée du niveau de la mer qui en résulterait, les scientifiques veulent mieux comprendre comment cette évolution de la banquise affecte l’habitabilité de l’Arctique et du reste du monde.

Photo: C. Grandpey

Les résultats de leurs travaux ont été publiés le 8 novembre 2025 dans la revue Science. On peut y lire : « Si nous parvenons à prévoir le calendrier et la répartition spatiale du recul de la banquise, cela nous aidera à comprendre le réchauffement climatique, à anticiper les changements des chaînes alimentaires et de la pêche, et à nous préparer aux bouleversements géopolitiques.»
Jusqu’à présent, il était difficile d’établir des prévisions précises concernant la banquise arctique, notamment en raison de l’absence de données historiques. La poussière cosmique pourrait combler ce vide. Lorsque l’océan Arctique est recouvert de glace, cette poussière ne peut atteindre le fond marin. Par contre, lorsque l’océan est dépourvu de glace, une plus grande quantité de poussière cosmique peut se déposer sous forme de sédiments. Les auteurs de l’étude ont recherché cette poussière dans des carottes sédimentaires prélevées à trois endroits de l’océan Arctique : près du pôle Nord où la glace est présente toute l’année ; près de la limite de la banquise en septembre, lorsque la couverture de glace est à son minimum annuel ; et sur un site qui était recouvert de glace en 1980, mais qui ne l’est plus.

Photo: C. Grandpey

Les scientifiques recherchaient en particulier des couches sédimentaires contenant les isotopes hélium-3 et thorium-230. Chacun a une origine différente. L’hélium-3 est présent dans la poussière cosmique, ayant été capturé par les grains de poussière du vent solaire, tandis que le thorium est un produit de désintégration de l’uranium naturel dissous dans l’océan. Lorsque la glace recouvre l’océan en grande quantité, le rapport thorium-230/hélium-3 devrait être plus élevé que lorsque la glace est moins épaisse et que davantage de poussière cosmique peut atteindre le fond marin.

Les carottes sédimentaires ont fourni un enregistrement historique retraçant les périodes où des quantités plus ou moins importantes de poussières cosmiques ont atteint le fond de l’océan, ce qui correspond à des variations de la couverture de glace de mer. Cette dernière a connu des fluctuations au fil des millénaires, et les carottes indiquent qu’au début de la dernière période glaciaire, il y a environ 20 000 ans, la quantité de poussières cosmiques sur les fonds marins a diminué car la glace recouvrait alors la totalité de l’Arctique durant toute l’année.

Lorsque la glace a commencé à fondre et à se retirer, marquant la fin de la dernière période glaciaire il y a 15 000 ans, les carottes sédimentaires révèlent une augmentation de la quantité de poussières cosmiques dans les sédiments du fond marin.
Le plus intéressant réside dans les informations que ces carottes nous fournissent sur les facteurs qui déterminent l’étendue de la banquise et sur la manière dont sa présence, ou son absence, influence l’équilibre des nutriments et, par conséquent, la biosphère océanique.

Photo: C. Grandpey

On pensait jusqu’alors que la fonte des glaces de l’océan Arctique était liée à la température de l’océan, mais les résultats de cette étude indiquent qu’elle est davantage influencée par les températures atmosphériques. Cette information est cruciale car l’océan réagit plus lentement aux changements climatiques que l’atmosphère. Si cela se confirme, la fonte des glaces de l’océan Arctique pourrait s’accélérer plus rapidement que prévu.
Les chercheurs ont également constaté une corrélation entre la couverture de glace et la vitesse à laquelle les nutriments océaniques sont consommés par les processus biologiques. Des coquilles minuscules, autrefois usées par des micro-organismes – les foraminifères – ont été retrouvées dans les carottes de sédiments. Une analyse chimique a révélé la part des nutriments disponibles consommée par ces micro-organismes à différentes périodes de leur vie. Les scientifiques ont établi une corrélation entre l’augmentation de la consommation de nutriments et la diminution de la banquise.
L’étude laisse encore certaines questions en suspens, notamment celle de savoir pourquoi la disponibilité des nutriments varie en fonction de la quantité de glace de mer. Une explication possible est que la diminution de la glace libère de l’espace à la surface de l’océan, favorisant ainsi le développement d’algues photosynthétiques qui produisent davantage de nutriments.
Source : space.com.

———————————————–

As the definition goes, cosmic dust – also called extraterrestrial or interplanetary dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids (<30 μm) and meteoroids (>30 μm). Interstellar dust particles were collected by the Stardust spacecraft and samples were returned to Earth in 2006.

Interplanetary dust laced with helium-3 that has settled on the sea floor has provided climate scientists with an urgently needed historical record of sea ice. These scientists are battling with understanding how the Arctic will respond to the worsening climate crisis.

The amount of ice on the Arctic Ocean has depleted by more than 42% in response to rising temperatures since regular satellite monitoring began in 1979, and the Arctic continues to warm faster than anywhere else on Earth. In a few decades time we could see the Arctic Ocean free of ice all summer long. Besides the resultant rising sea levels, scientists want to learn more about how this change in sea ice affects the habitability of the Arctic and the wider world.

The results of their work were published on November 8 2025 in the journal Science. One can read : « If we can project the timing and spatial patterns of ice coverage decline in the future, it will help understand warming, predict changes to food webs and fishing, and prepare for geopolitical shifts. »

Until now, it has been difficult to make accurate predictions about the Arctic sea ice in part because there have been no historical records to base predictions on. I

The cosmic dust can fill this void. When the Arctic Ocean is covered in ice, the dust is prevented from reaching the sea floor. So when the ocean is largely absent of ice, more of the cosmic dust is able to settle as sediment.

The authors of the study went searching for this dust in sedimentary cores taken from three locations in the Arctic Ocean: one near the North Pole where there is ice present all year, one near the edge of the ice in September when ice coverage is at its annual lowest, and another at a site that was covered in ice in 1980, but no longer is. In particular, the researchers were looking for sedimentary layers of the isotopes helium-3 and thorium-230. Each has a different origin. Helium-3 is present in cosmic dust, having been captured by dust grains from the sun’s solar wind, whereas thorium is a decay product of naturally occurring uranium that has become dissolved in the ocean. At times of high ice abundance on the ocean, the ratio of thorium-230 to helium-3 should be higher than at times when there is less ice and more cosmic dust can reach the seabed.

The cores provided a historical record chronicling periods when greater and smaller amounts of cosmic dust have reached the bottom of the ocean, corresponding to differing amounts of sea ice. The ice has waxed and waned over millennia, and the cores indicate that the dawn of the most recent ice age, beginning about 20,000 years ago, saw a decrease in the amount of cosmic dust on the seabed as ice covered the entirety of the Arctic all year round.

When the ice began to melt and retreat as the ice age started to come to an end 15,000 years ago, the cores show that the amount of cosmic dust in the sediment on the sea floor began to increase.

What is most interesting is what the cores tell us about what governs the amount of sea ice and how its presence, or lack thereof, can influence the balance of nutrients and hence the biosphere of the ocean.

The assumption had been that the loss of ice from the Arctic Ocean was governed by the temperature of the ocean, but the results of the study indicate that it has more to do with atmospheric temperatures instead. This is a crucial piece of information because the ocean takes longer to respond to climate change than the atmosphere. If true, then we may lose sea ice in the Arctic Ocean more quickly than we expected.

The researchers also found that sea-ice coverage is correlated with how quickly nutrients in the ocean are consumed by biological processes. Tiny shells that were once worn by microbes called foraminifera were present in the cores, and a chemical analysis revealed how much of the total available nutrients they consumed when the microbes were alive at different points in the historical record. The scientists found a correlation between increased consumption of nutrients and a lack of sea ice.

The study still leaves some questions unanswered for now, such as why nutrient availability changes with the amount of sea ice present. One possible explanation is that with less ice, there is more room on the surface of the ocean for photosynthesizing algae that produce more nutrients.

Source : space.com.