Le CO2 de la toundra, un autre sujet d’inquiétude // CO2 in the tundra, another area of concern

Au cours de ma conférence « Glaciers en péril », j’explique que l’on a beaucoup négligé jusqu’à aujourd’hui les conséquences de la fonte du permafrost – ou pergélisol – arctique sur le réchauffement climatique.

Une étude effectuée par une équipe internationale de scientifiques et publiée dans Nature Climate Change nous apprend que le sol de l’Arctique s’est réchauffé au point de libérer plus de carbone en hiver que les plantes nordiques peuvent en absorber en été. La toundra recouvre une grande partie de l’Arctique, que se soit en Sibérie, au Canada ou en Alaska. Elle représente un gigantesque réservoir qui contient nettement plus de carbone que ce qu’on trouve déjà dans l’atmosphère. Avec le réchauffement climatique, la toundra est en passe de devenir une source des gaz à effet de serre responsables du changement climatique.

Les auteurs de l’étude ont installé des détecteurs de dioxyde de carbone (CO2) sur le sol dans plus de 100 sites autour de l’Arctique et ont effectué plus d’un millier de mesures. Ils ont découvert que la quantité de carbone libérée pat le permafrost était beaucoup plus importante que prévu. Les résultats montrent que les émissions de CO2 – 1,7 milliard de tonnes par an – sont environ deux fois plus élevées que les estimations précédentes.

On pense que les plantes arctiques absorbent un peu plus d’un milliard de tonnes de gaz de l’atmosphère chaque année pendant la saison de croissance. Le résultat net est que les sols arctiques dans le monde rejettent probablement déjà plus de 600 millions de tonnes de CO2 par an.

Si la situation n’évolue pas, les émissions du sol nordique seraient susceptibles de libérer 41 % de carbone supplémentaire d’ici la fin du siècle. Or, l’Arctique se réchauffe déjà trois fois plus vite que le reste du monde. Selon la dernière étude, même si des efforts importants d’atténuation sont déployés, ces émissions augmenteront de 17 %.

Les chercheurs n’ont pas mesuré le méthane, un gaz à effet de serre environ qui est 30 fois plus puissant que le dioxyde de carbone et qui est également rejeté par le sol. On se souvient que de puissantes explosions de méthane ont creusé de spectaculaires cratères au cœur de la Sibérie.

Source : Presse canadienne.

——————————————–

During my « Glaciers at Risk » conference, I explain that the consequences of the melting Arctic permafrost on global warming have been largely neglected.
A study conducted by an international team of scientists and published in Nature Climate Change tells us that Arctic soil has warmed to the point of releasing more carbon in winter than northern plants can absorb in summer. The tundra covers a large part of the Arctic, whether in Siberia, Canada or Alaska. It is a huge reservoir that contains significantly more carbon than is already found in the atmosphere. With global warming, the tundra is becoming a source of the greenhouse gases responsible for climate change.
The authors of the study installed carbon dioxide (CO2) detectors on the ground in more than 100 sites around the Arctic and made more than a thousand measurements. They discovered that the amount of carbon released from permafrost was much higher than expected. The results show that CO2 emissions – 1.7 billion tonnes per year – are about twice as high as previous estimates.
Arctic plants are thought to consume just over one billion tonnes of gas from the atmosphere each year during the growing season. The net result is that Arctic soils worldwide probably already emit more than 600 million tons of CO2 a year.
If the situation does not change, northern soil emissions could release 41% more carbon by the end of the century. The Arctic is already warming three times faster than the rest of the world. According to the latest study, even if significant mitigation efforts are made, these emissions will increase by 17%.
The researchers did not measure methane, a greenhouse gas that is about 30 times more powerful than carbon dioxide and is also released from the ground. One should remember that powerful explosions of methane have dug spectacular craters in the heart of Siberia.
Source: Canadian Press.

Vues de la toundra en Alaska (Photos: C. Grandpey)

Les effets du réchauffement climatique sur la vie dans la toundra // The effects of global warming on life in the tundra

Les conditions de vie sont très spéciales dans l’Arctique pendant l’hiver. Ainsi, voyager avec des véhicules lourds à travers la toundra n’est possible que lorsque le sol est profondément gelé. De nos jours, avec le réchauffement climatique, les habitants du nord de l’Alaska doivent attendre fin décembre ou début janvier pour commencer à se déplacer en dehors des routes traditionnelles.

Si l’industrie a été en mesure de faire face aux changements, de nombreux habitants ont encore du mal à s’adapter à ce nouveau mode de vie. Juste avant Noël 2017, les conditions n’étaient toujours pas réunies pour le passage des gros véhicules industriels qui peuvent gravement endommager le sol de la toundra. La température de l’air encore trop élevée et une épaisse couche de neige empêchaient le sol à 30 centimètres de profondeur d’atteindre les -5 ° C requis pour leur permettre de circuler. De plus, alors que certaines zones avaient les 22 centimètres de neige obligatoires pour circuler dans les collines et 15 centimètres dans les zones côtières, d’autres ne correspondaient pas aux conditions requises. À la mi-janvier 2018, la zone côtière à l’est de l’Alaska répondait aux critères d’ouverture, tandis que les autres parties de la côte et des collines restaient fermées.
La fin décembre et le début janvier sont devenues la norme pour commencer le hors piste à cause de la hausse des températures qui affecte désormais les mois d’hiver dans la majeure partie de l’Arctique. En jetant un coup d’œil aux dates de début du hors piste au cours des quatre dernières décennies, il est indéniable que les dates d’autorisation se sont sensiblement modifiées. Au fil des ans, la saison de hors piste a commencé de plus en plus tard. Cependant, il est important de noter que d’autres facteurs ont pu contribuer à la modification des dates d’ouverture. Au début des années 1970, la toundra était accessible en octobre ou en novembre. Vers le milieu des années 1980, les dates d’ouverture du hors piste  étaient principalement en novembre, avec quelques exceptions en décembre, et une seule ouverture en janvier pendant l’hiver 1984-1985. À la fin des années 1990, les ouvertures de janvier étaient devenues monnaie courante et les dates d’ouverture de novembre avaient quasiment disparu. Au cours des années 2000, les dates d’ouverture se situaient uniquement en décembre et janvier.
Les hivers plus courts et plus chauds ont des effets importants sur les habitants qui dépendent de conditions météorologiques froides pour accéder en toute sécurité à leurs territoires de chasse ou pour se déplacer entre les communautés ou les camps.
Les chasseurs du district de North Slope se plaignent souvent des conditions de glace de mer qui sont devenues imprévisibles et dangereuses. Les poches d’eau libre et les courants changeants rendent difficiles les prévisions de chasse pour les baleiniers, et la pratique de leur activité est devenue plus dangereuse.
Dans la toundra, les chasseurs éprouvent souvent plus de difficultés à parcourir de longues distances en motoneige, et beaucoup de terres restent dépourvues de neige tout au long de la saison. Dans certaines régions, les rivières ne gèlent plus, ce qui signifie que les chasseurs ne peuvent pas voyager de façon fiable, que ce soit par bateau ou par motoneige.
Sans itinéraires hivernaux fiables, les chasseurs et leurs communautés peuvent se trouver coupés des ressources dont ils dépendent. S’ils parviennent à les atteindre, il leur faut souvent dépenser plus d’argent en carburant car ils doivent voyager plus loin qu’auparavant pour rapporter une même quantité de nourriture.
Ainsi, alors que certains secteurs réussissent à s’adapter aux changements, d’autres parviennent difficilement à modifier leurs pratiques d’une année à l’autre.
Source: Anchorage Daily News.

————————————-

Living conditions are very special in the Arctic during the winter. For instance, travelling with heavy vehicles across the tundra is only possible when the ground is deeply frozen. Nowadays, with climate change and global warming, people in the north of Alaska have to wait until late December and early January to start the off-road season.

While industry has had to adapt to changes, many locals are still struggling to find a new normal amid the shifting seasons. Just before Christmas 2017, conditions still were not favourable for travel for the large and heavy industry vehicles that, without a buffer provided by snow and solidly frozen ground, can do serious damage to the underlying tundra. High ambient temperatures and deep snow kept the ground at a depth of 30 centimetres from reaching the requisite -5°C. Additionally, while certain monitoring areas had the 22 centimetres of snow required for the foothills and 15 centimetres of snow for the coastal areas, others did not. By mid-January 2018, the eastern coastal area had met the criteria to open, while the other parts of the coast and foothills remained closed.

Late December and early January starts to the off-road season have become the norm as higher temperatures continue to mark the winter months across most of the Arctic. Glancing back over the start dates for the last four decades, a noticeable shift in start times has undoubtedly happened: As the years have gone by, the off-road season has started later and later. However, it is important to note there may have been other factors at play contributing to the changing opening dates. In the early 1970s, the tundra opened consistently in October or November. By the mid-1980s, the opening dates were predominantly in November, with a few December dates, and a single January opening in the winter of 1984-85. By the late 1990s, January openings were common and November dates had all but disappeared. Throughout the 2000s, December and January were the only months with openings.

Shorter and warmer winters have had significant effects on locals who depend on cold-weather conditions for safe travel to hunting grounds and between communities or camps.

Local hunters across the North Slope have frequently complained of unpredictable and hazardous sea ice conditions. Pockets of open water and shifting flows have made it harder for whalers to predict how their environments will shift and when, making the practice more dangerous.

Out on the tundra, hunters are often finding it harder to travel extended distances by snowmachine with more land remaining open and snow-free throughout the season. In some areas, rivers have not frozen solid, meaning hunters can’t travel reliably by either boat or snowmachine.

Without dependable winter routes, subsistence hunters and their communities can be cut off from the resources on which they depend. If they can reach them, they often find themselves spending more money on gas and transportation to travel further afield than they used to for the same nutritional return.

So, while certain sectors are able to compensate for changes, others cannot so easily shift their practices year-to-year.

Source : Anchorage Daily News.

Vues de la toundra (Photos: C. Grandpey)

Le Parc National du Denali (Alaska) et le réchauffement climatique // Denali National Park (Alaska) and global warming

Selon un nouveau rapport publié par le Service des Parcs Nationaux, les visiteurs qui voyagent dans le Parc National du Denali doivent s’attendre à être confrontés à des problèmes causés par le réchauffement climatique : glissements de terrain déclenchés par le dégel du permafrost, gonflement des torrents provoqué par la fonte des glaciers et fumée générée par les incendies de forêts de plus en plus importants et de plus en plus fréquents
Le rapport considère que le changement climatique représente l’un des nombreux défis pour les services de transport du Parc du Denali, site de la plus haute montagne d’Amérique du Nord et l’une des principales destinations touristiques en Alaska. Le plan décrit les facteurs qui devraient guider la gestion future du Parc au cours des 20 prochaines années.
Le Parc National du Denali est déjà connu pour ses règles de transport très strictes. Une seule route de 148 kilomètres pénètre à l’intérieur du Parc, et très peu de véhicules privés sont autorisés à circuler sur les 25 premiers kilomètres. La plupart des visiteurs utilisent les navettes du Parc pour des visites guidées ou pour atteindre les terrains de camping et les sentiers de randonnée. Le Parc est également une destination privilégiée pour les pilotes de petits avions qui déposent les alpinistes sur les camps de base permettant d’accéder aux glaciers, et qui proposent aux touristes des survols du Denali et d’autres sommets de la Chaîne de l’Alaska.

Comme c’est le cas pour les autres contrées du Grand Nord, le Denali devrait connaître les effets du réchauffement climatique au cours des prochaines décennies. On s’attend à ce que les températures annuelles moyennes subissent une hausse de 2,5°C d’ici 2040 et de 4°C d’ici 2080. Les changements les plus significatifs seront probablement observés en hiver.
Le Parc du Denali montre déjà les effets du changement climatique, avec des phénomènes comme l’accélération de la fonte des glaciers, l’expansion de la végétation arbustive à des altitudes et des latitudes plus hautes, et l’apparition d’affaissements dans le paysage provoqués par le dégel du permafrost. Ces changements peuvent avoir un effet sur les personnes qui se déplacent à pied, en véhicule, ou en avion. Les eaux de fonte des glaciers peuvent inonder la route, les sentiers ou les pistes d’atterrissage, tandis que la fumée des incendies de forêts peut représenter un danger pour le transport aérien.
La fréquentation touristique du Parc peut être également affectée. Les périodes d’ouverture du Parc au printemps et à l’automne vont probablement s’allonger, alors qu’elle font actuellement partie de la période hors saison. Cela entraînera une demande accrue de moyens de transport et plus de services pour les visiteurs. La route du Parc est particulièrement vulnérable aux conditions changeantes, notamment au dégel du permafrost. Le Denali se trouve à la limite entre la zone de permafrost permanent et la zone de permafrost discontinu. Avec l’augmentation des températures, la limite entre ces deux zones devrait migrer vers le nord. Cela exposera la route du Parc à de plus en plus de dégâts liés à des affaissements, ce qui exigera une maintenance accrue.
Certains problèmes liés au climat sont déjà apparus le long de la route du Parc. En octobre 2013, une masse de matériaux de 18 mètres de long et de 33 mètres de large, libérée par la fonte du permafrost, a glissé sur la route du Parc et entravé le passage des véhicules. D’autres glissements se sont produits pendant l’été 2016; l’un d’eux a temporairement fermé la route au niveau de la borne 67 et bloqué plusieurs visiteurs.
Source: Alaska Dispatch News.

——————————————

According to a new report released by the National Park Service, visitors travelling in Denali National Park and Preserve should expect to observe problems caused by global warming. Among them are landslides triggered by permafrost thaw, floodwaters gushing from melting glaciers and smokier air from bigger and more frequent wildfires

The report identifies climate change as one of several challenges looming for transportation in the park, site of North America’s tallest mountain and one of the top visitor destinations in Alaska. The plan outlines factors that should guide future management over the next 20 years.

The park is already known for its strict transportation rules. A single 148-kilometre road goes into its heart, and very few private vehicles are allowed past the first 25 kilometres. Most visitors use park shuttle buses for day sightseeing trips or to reach campgrounds and hiking destinations. The park is also an important destination for pilots flying small planes; ski-equipped aircraft ferry mountain climbers to remote glacial base camps and carry sightseers who want to view Denali and other Alaska Range peaks from the air.

As is the case for the rest of the far North, Denali is expected to get warmer in coming decades. Average annual temperatures are expected to be 2.5°C higher by 2040 and 4 degrees warmer by 2080, with the biggest changes likely to come in winter.

Denali is already showing effects of climate change, including accelerating glacial melt, expansion of woody plants to higher elevations and latitudes, and slumps in the landscape caused by permafrost thaw. Those changes in the natural world can affect people travelling by foot, vehicle, boat or airplane. Floods from glacial melt could swamp road, trail or airstrip sections, for example, and increased wildfire smoke can create hazards for air travel.

Even the distribution of visitor crowds is potentially affected. Milder spring and autumn weather is likely to increase what is now considered the offseason for the park, and thus increase demand for transportation and visitor services. The park road is particularly vulnerable to changing conditions, notably permafrost thaw. Denali sits atop the boundary between continuous permafrost, in which is the area fully underlain by frozen soil, and discontinuous permafrost, which is the area where permanently frozen soil exists in patches. As temperatures rise, the boundary between continuous and discontinuous permafrost is expected to migrate north. This will expose the Park Road to an increasing change of subsidence-related damage, resulting in more maintenance.

Some climate-related problems along the park road have already emerged. In October 2013, an 18-metre-long, 33-metre-wide mass of partially thawed permafrost chunks slid onto the park road and blocked passage. Some smaller slides occurred in the summer of 2016; one temporarily closed the road at Mile 67 and stranded some visitors.

Source : Alaska Dispatch News.

Photos: C. Grandpey

La fonte du permafrost en Sibérie (suite) // The melting of permafrost in Siberia (continued)

Comme je l’ai indiqué dans plusieurs notes, en Russie les scientifiques mettent en garde contre la menace d’explosions de méthane, aussi soudaines que spectaculaires, qui pourraient créer de nouveaux cratères géants dans le nord de la Sibérie. Ils utilisent les satellites pour surveiller des monticules faits de glace et de terre – connus sous le nom de pingos – qui pourraient exploser dans un avenir très proche. Un pingo peut atteindre 70 mètres de hauteur, avec un diamètre 600 mètres (voir photo ci-dessous).
Selon les scientifiques de l’Institut Trofimuk de géologie et de géophysique pétrolière de Novossibirsk, le risque est particulièrement élevé dans la Péninsule de Yamal, là où se trouvent les plus grandes réserves de gaz naturel du monde.

Un article paru dans le Siberian Times nous apprend que des scientifiques ont découvert jusqu’à 7 000 «bulles» remplies de gaz et prêtes à exploser en Sibérie arctique au cours d’un exercice impliquant des équipes sur le terrain et la surveillance par satellite. Un certain nombre de cratères, comme celui de la photo ci-dessous, sont apparus au nord de la Sibérie ces dernières années et ils sont étudiés avec soin par les scientifiques qui sont persuadés qu’ils se sont formés quand des pingos ont explosé.
Le chiffre de 7 000 « bulles » dont fait état l’agence TASS est nettement plus élevé que précédemment. La région a connu plusieurs exemples récents d’ouvertures de tels cratères provoquées par l’explosion du méthane suite au dégel du pergélisol provoqué par le changement climatique.
La branche Oural de l’Académie des Sciences de Russie est persuadée que la fonte du permafrost est la cause de la formation des bulles de gaz. Cependant, en certains endroits, le phénomène est quelque peu différent et ne se traduit pas par l’explosion de pingos. On assiste à la formation de bulles baptisées «toundra tremblante». Néanmoins, leur apparition à des latitudes aussi élevées est probablement liée, comme pour les pingos, à la fonte du permafrost liée elle-même à l’élévation globale de la température au nord de l’Eurasie au cours des dernières décennies.
Le méthane a montré des taux de concentration 1000 fois supérieurs à la normale, tandis que le dioxyde de carbone était 25 fois supérieur à la normale. Les premières mesures avaient montré des concentrations de méthane 200 fois supérieures aux niveaux habituels. On a recensé une quinzaine d’exemples de terrain sibérien instable en juillet dernier sur l’île Bely, un lieu fréquenté par les ours polaire, à environ 750 km au nord du cercle polaire arctique dans la mer de Kara. Un chercheur qui se trouvait sur le terrain a déclaré: «Chaque fois que nous retirions une touffe d’herbe et de terre, un jet de gaz jaillissait.».
Le dernier été a été anormalement chaud sur la Péninsule de Yamal, avec la température de l’air qui atteignait 35°C. Cette chaleur a eu un impact sur le pergélisol qui a fondu sur une surface plus vaste et une plus grande profondeur que par le passé. Cela a provoqué la formation de nouveaux lacs et des changements significatifs dans le paysage de la toundra.
Source: The Siberian Times.

————————————-

As I put it in several posts, in Russia, scientists are warning of the threat of sudden and dramatic methane explosions creating new giant craters in northern Siberia. They are using satellites to monitor ice and soil humps – known as a pingos – which they fear can soon erupt. A pingo can be as high as 70 metres and up to 600metres in diameter (see photo below)
According to scientists from the Trofimuk Institute of Petroleum Geology and Geophysics in Novosibirsk, at special risk is the Yamal Peninsula, the location of the world’s largest natural gas reserves.

An article in the Siberian Times informs us that scientists have discovered as many as 7,000 gas-filled ‘bubbles’ expected to explode in Actic regions of Siberia after an exercise involving field expeditions and satellite surveillance. A number of large craters, like the one in the photo below, have appeared in northern Siberia in recent years and they are being carefully studied by scientists who believe they were formed when pingos exploded.

The total of 7,000 “bubbles” reported by the TASS news agency is startlingly more than previously known. The region has seen several recent examples of sudden ‘craters’ caused by eruptions from methane gas released by the thawing of permafrost which is triggered by climate change.

The Ural branch of Russian Academy of Science says that thawing permafrost is a suspected reason for the cause of underground gas bubble formation. However, on some occasions, the phenomenon appears different from the exploding pingo events. These bubbles have been called ‘trembling tundra’. Nevertheless, their appearance at such high latitudes is most likely linked, like the pingos, to thawing permafrost which in is in turn linked to overall rise of temperature on the north of Eurasia during last several decades.

Methane has exceeded the norm 1,000 times, while carbon dioxide was 25 times above the norm. Initial measurements suggested methane levels 200 times above usual levels. Some 15 examples of this swaying Siberian ground were revealed last July on Bely Island, a polar bear outpost some 750 km north of the Arctic Circle in the Kara Sea. One research team account at the scene said: ‘As we took off a layer of grass and soil, a fountain of gas erupted.’

The last summer was abnormally hot for the Yamal peninsula, with the air temperature reaching 35°C. This heat impacted on the depth of seasonal thawing which grew deeper and spread wider than in the past, so causing the formation of new lakes and a noticeable change in the regional tundra landscape.

Source : The Siberian Times.

Exemple de pingo en Sibérie (Crédit photo: Wikipedia)

Cratère d’explosion de méthane en Sibérie (Crédit photo: Wikipedia)

Exemple de fonte de la toundra (Photo: C. Grandpey)