Conséquences environnementales de la guerre en Iraq // Environmental consequences of the war in Irak

drapeau-francaisLes images satellite mises en ligne par la NASA montrent un panache de dioxyde de soufre (SO2) en provenance de la mine et de l’usine de traitement de soufre d’Al-Mishraq près de Mossoul, en Irak. Les images montrent également un panache de fumée noire en train de s’échapper du champ de pétrole de Qayyarah. Les deux panaches sont la conséquence de la guerre qui fait rage au Moyen-Orient.
Déjà en juin 2003, les scientifiques de la NASA avaient utilisé des satellites pour analyser la quantité de dioxyde de soufre envoyée dans l’atmosphère par un incendie à cette même mine de soufre. Ils avaient calculé que le feu, qui a brûlé pendant près d’un mois, émettait 21 kilotonnes de SO2 par jour. C’est quatre fois plus que ce que rejette chaque jour le plus grand émetteur de dioxyde de soufre au monde, la fonderie de Noril’sk en Russie.
Treize ans plus tard, l’histoire semble se répéter. Un incendie dans la même usine de traitement de soufre en Irak envoie d’énormes quantités de SO2 dans l’atmosphère. De nouveau, les scientifiques observent les événements en temps réel, avec davantage d’instruments satellitaires à leur disposition. Les émissions de SO2 en provenance de l’incendie sont déjà importantes. Si le dioxyde de soufre provenait d’un volcan, ce serait déjà l’une des plus grandes éruptions de 2016.
Dans les premiers jours, l’incendie – qui a été détecté le 20 octobre – ne semblait pas être particulièrement violent et les premières observations laissaient supposer qu’une grande partie du dioxyde de soufre se concentrait dans la couche limite et la basse troposphère, avec un impact sur la qualité de l’air et donc sur la santé. Plus récemment, le SO2 a atteint des altitudes plus élevées où il peut être véhiculé sur de longues distances. Selon des articles de presse, deux personnes sont mortes après avoir respiré des vapeurs de soufre, et un millier d’autres ont été traitées pour des problèmes respiratoires.
La carte ci-dessous montre l’étendue du panache dans l’atmosphère le 24 octobre 2016. Sur l’image satellite, le panache de l’usine de soufre d’Al-Mishraq est grisâtre tandis que celui émis par le champ de pétrole de Qayyarah est carrément noir.

Source: NASA.

—————————————-

drapeau-anglaisSatellite images released by NASA show one sulphur dioxide (SO2) plume from the Al-Mishraq sulphur mine and processing facility near Mosul, Iraq . They also show a black smoke plume emitted by the Qayyarah oil field. Both plumes are consequences of the war that rages in the Middle East.

Back in June 2003, NASA’s atmospheric scientists had used satellites to track how much sulphur dioxide streamed into the atmosphere from a fire at this same sulphur mine. They calculated that the fire, which burned for nearly a month, released 21 kilotons of SO2 per day. That is roughly four times as much as is emitted each day by the world’s largest single-source emitter of sulfur dioxide, a smelter in Noril’sk, Russia.

Thirteen years later, history seems to be repeating itself. A fire at the same sulphur facility in Iraq is emitting tremendous quantities of SO2 into the atmosphere. Once again, this group of scientists is closely watching the events in real time, with a more capable set of satellite instruments at their disposal. Already, SO2 emissions from the fire have been significant. If the sulphur dioxide were coming from a volcano rather than a fire, it would already be among the largest eruptions of 2016.

In the first few days, the fire – which was first detected on October 20th – did not appear to be particularly energetic and preliminary observations suggested that much of the sulphur dioxide remained in the boundary layer and the lower troposphere, which accentuates the impact on air quality and health. More recently, SO2 has been lofted to higher altitudes where it may undergo long-range transport. According to news reports, two people have died after breathing sulphur fumes, and up to 1,000 people have been treated for breathing problems.

The map below shows the extent of the plume within the planetary boundary layer on October 24th, 2016. On the satellite image, the plume from the Al-Mishraq sulphur plant appears white-gray. Smoke plumes from the Qayyarah oil field are black.  Source: NASA.

irak-01

Etendue du nuage de dioxyde de soufre (Source: NASA)

irak-02

Image satellite des deux sources de pollution en Iraq (Source: NASA)

Lichens et gaz volcaniques// Lichens and volcanic gases

drapeau francaisL’Observatoire des Volcans d’Hawaii (HVO) a récemment publié un article intéressant sur le comportement des lichens dans les régions volcaniques et plus particulièrement sur la Grande Ile d’Hawaii. En lisant l’article, on apprend que les lichens sont des organismes qui savent s’adapter à la vie dans les environnements extrêmes. Ils peuvent survivre à la chaleur, au froid, à la sécheresse, ou à l’humidité. Ils peuvent se développer à même le sol, sur l’écorce des arbres, sur des roches, ainsi que sur le métal rouillé ou le plastique. Ils apparaissent souvent dans des habitats non occupés par les plantes à graines qui sont plus envahissantes.
Sur la Grande Ile d’Hawaii, les lichens colonisent souvent de jeunes coulées de lave, en particulier celles composées de lave a’a. Les lichens contribuent au développement du sol en fournissant des matières organiques et, quand ils ont la capacité de fixer l’azote, ils peuvent l’ajouter à l’environnement. Cela permet de préparer le terrain pour le développement des espèces végétales. Certains types de lichens rencontrés à Hawaii sont également les premiers à coloniser des régions volcaniques ailleurs dans le monde comme les Caraïbes, les Açores, La Réunion, les îles Canaries, et en Afrique.
Bien qu’ils soient capables de tolérer des conditions environnementales extrêmes, certains lichens sont très sensibles à la pollution de l’air. Les lichens peuvent retenir pendant des dizaines ou des centaines d’années les produits chimiques qu’ils absorbent à partir de l’air et de l’eau. Depuis le milieu du 19ème siècle, quand la révolution industrielle a largement contribué à la pollution de l’air, les observateurs ont noté la rareté des lichens dans les milieux urbains.
Toutes les espèces de lichens n’ont pas la même sensibilité à la pollution de l’air, de sorte que la présence ou l’absence de certains lichens dans une zone peut être utilisée pour cartographier les concentrations de polluants. De nombreuses études à travers le monde ont utilisé les lichens pour évaluer la qualité de l’air.
Les lichens sont particulièrement sensibles au dioxyde de soufre (SO2), un polluant produit par les centrales fonctionnant au charbon et au pétrole, les processus industriels, les automobiles et les volcans, tels que ceux d’Hawaii. Le SO2 dissous dans l’eau devient de l’acide qui est facilement absorbé par les lichens et nuit à leur capacité de photosynthèse. Sans le sucre qui est produit par la photosynthèse et qui contribue à la vie du lichen, l’organisme ne pourrait pas prospérer et finir par mourir. Pour certaines espèces de lichens, le SO2 inhibe également la capacité à se reproduire.
Lorsque l’éruption sommitale du Kilauea a débuté en 2008 dans le cratère de l’Halema’uma’u, d’énormes quantités de SO2 ont été émises par le volcan et les lichens de la région ont beaucoup souffert. On est en droit de penser que la baisse significative des émissions de SO2 mesurées depuis 2008 pourrait se traduire par une reprise partielle de ces lichens. Les lichens peuvent aussi accumuler des éléments présents en faible quantité dans les émissions volcaniques. Des études effectuées sur le Kilauea, ainsi que sur l’Etna et Vulcano en Italie, montrent que dans les zones sous le vent lourdement impactées par les panaches volcaniques, les lichens contiennent une concentration plus élevée de polluants volcaniques tels que le fluor, le brome et des métaux tels que le cuivre, le plomb, le zinc, l’or, le mercure et l’antimoine.
Les zones riches en végétaux peuvent intercepter le SO2 et « nettoyer » l’air, ce qui génère un microclimat plus adapté aux lichens. Certains habitants d’Hawaï ont remarqué qu’ils étaient moins gênés par la pollution volcanique, ou vog, dans les zones fortement boisées que dans les zones voisines qui sont dépourvues de végétation.

—————————————

drapeau anglaisThe Hawaiian Volcanoes Observatory recently released an interesting article about the behaviour of lichens on volcanoes. We learn that lichens are tough organisms adapted to life in extreme environments. They can survive heat, cold, drought, or an abundance of rain. They live on bare soil, tree bark, woody debris, and rocks, as well as on rusty metal and plastic.

On Hawaii Island, lichens are important colonists of young lava flows, particularly aa lava. Lichens contribute to the accumulation of soil by supplying organic matter, and nitrogen-fixing lichens may add nitrogen to the environment. This helps set the stage for future development of plant communities. Certain types of lichens found in Hawaii are also important pioneers of young volcanic landscapes in other parts of the world, including the Caribbean, the Azores, La Reunion Island, the Canary Islands, and Africa.

Although able to tolerate environmental extremes, some lichens are quite sensitive to air pollution. Lichens retain the chemicals they absorb from air and water over periods of tens to hundreds of years. Since the mid-19th century, when the industrial revolution began producing increased levels of air pollution, observers have noted the scarcity of lichens growing in urban settings.

Lichen species differ in their sensitivity to air pollution, and the presence or absence of different lichens in an area has been used to map concentrations of pollutants. Hundreds of studies around the world have used lichens to assess air quality.

Lichens are particularly sensitive to sulphur dioxide (SO2), a pollutant produced by coal- and oil-burning power plants, industrial processes, automobiles, and volcanoes, such as those here in Hawaii. SO2 dissolved in water is acidic, is readily absorbed by lichens, and damages their ability to photosynthesize. Without the sugar which is produced through photosynthesis and which fuels the lichen’s life, the organism will fail to thrive and may eventually die. For some species, SO2 also inhibits the ability of lichens to reproduce.

When the summit eruption of Kilauea began in 2008 within Halema’uma’u Crater, huge amounts of SO2 were released, and lichens in the area suffered. One might expect that the significant decline in emissions measured since 2008 could be reflected in a partial recovery of these lichens. Lichens can also accumulate trace elements present in volcanic emissions. Studies at Kilauea, as well as at Mount Etna and Vulcano in Italy, show that in downwind areas heavily impacted by volcanic plumes, lichens contain a higher concentration of volcanic pollutants. These include fluoride, bromide, and metals, such as copper, lead, zinc, gold, mercury and antimony.

Heavily vegetated areas can intercept SO2, effectively “scrubbing” the air to provide a microclimate that is more hospitable to lichens. Some Hawaii residents have noted that they are less irritated by volcanic pollution, or vog, in heavily forested areas than in adjacent exposed areas.

Lichens 01

Lichens en Islande

Lichens 02

Photos: C. Grandpey

 

Les effondrements de l’atmosphère de Io // Io’s atmospheric collapses

drapeau-francaisLes scientifiques viennent d’avoir la confirmation d’un phénomène qu’ils imaginaient depuis longtemps: Io, la lune active de Jupiter, a une atmosphère sujette à des effondrements. Les nouvelles images montrent que l’enveloppe de dioxyde de soufre (SO2) qui entoure Io se transforme en glace lorsque la lune pénètre quotidiennement dans l’ombre de sa planète et redevient gazeuse quand la lune émerge de cette zone d’ombre.
Io, cinquième lune de Jupiter, est le corps le plus volcanique du système solaire. Des panaches de SO2 sont émis par plusieurs volcans actifs ; ils montent jusqu’à 480 kilomètres au-dessus de la surface de la lune, avec une température atteignant 1650°C. En revanche, la surface de Io est particulièrement froide, surtout lorsque Jupiter bloque la lumière du soleil, ce qui provoque un effondrement atmosphérique.
Selon un chercheur, « si les volcans hyperactifs de Io sont la source du dioxyde de soufre, c’est la lumière du soleil qui contrôle la pression atmosphérique sur une base quotidienne en contrôlant la température de la glace à la surface. »
Les chercheurs ont utilisé le télescope Gemini Nord sur le Mauna Kea à Hawaii, avec son spectrographe Texas Echelon Cross Echelle (TEXES), pour observer Io lors de son passage dans et hors de l’ombre de Jupiter pendant deux nuits différentes. A l’époque, Io se trouvait à plus de 675 millions de kilomètres de la Terre.
Avec la lumière du soleil, la température moyenne de la surface de Io avoisine moins 150°C, mais une fois que la lune passe dans l’ombre de Jupiter, la température tombe à moins 168°C. N’étant plus chauffée par le soleil, l’atmosphère de SO2 gèle et se transforme en glace à la surface de la lune.
Io quitte l’ombre de Jupiter après 1,7 jours terrestres, ce qui équivaut à 2 heures de la journée de Io. La glace du SO2 se sublime alors et absorbe l’atmosphère à nouveau quand la lune pénètre dans la lumière du soleil.
Selon les chercheurs, la compréhension de Io est essentielle à la compréhension de l’environnement de Jupiter où la sonde Juno, envoyée par la NASA, est arrivée le 4 juillet dernier. Io émet des gaz qui finissent par se répandre dans le système de Jupiter, ce qui contribue à la formation des aurores observées sur les pôles de la planète (voir ma note du 9 mai 2015). Comprendre comment les émissions de Io sont contrôlées permettra d’obtenir une meilleure image du système de Jupiter.
Source: Scientific American.

————————————–

drapeau-anglaisScientists have just had the confirmation of a phenomenon they had imagined for a long time : Jupiter’s active moon Io has a collapsible atmosphere. New views show the satellite’s shroud of sulphur dioxide (SO2) freezing when Io enters its planet’s shadow each day and converting back to gas when the moon emerges.

Io, Jupiter’s fifth moon, is the solar system’s most volcanically active body. Plumes of SO2 are emitted by multiple active volcanoes, reaching up to 480 kilometres above the moon’s surface with a temperature reaching 1,650°C. Io’s surface, on the other hand, is frigidly cold, and gets even colder when Jupiter blocks out the sun, which prompts an atmospheric collapse.

According to one researcher, « though Io’s hyperactive volcanoes are the ultimate source of the sulphur dioxide, sunlight controls the atmospheric pressure on a daily basis by controlling the temperature of the ice on the surface. »  .

The researchers used the Gemini North telescope in Hawaii and the Texas Echelon Cross Echelle Spectrograph (TEXES) to watch Io cross into and out of Jupiter’s shadow on two different nights. At the time, Io was more than 675 million kilometres from Earth.

In sunlight, Io’s surface averages out to minus 150°C, but once the moon passes into Jupiter’s shadow, that temperature drops to minus 168°C. No longer warmed by the sun, the SO2 atmosphere freezes and turns to frost on the moon’s surface.

Io leaves Jupiter’s shadow after 1.7 Earth days, which is 2 hours of Io’s day, and the SO2 sublimates and pumps up the atmosphere once again when the moon re-enters sunlight.

According to researchers, understanding Io is key to understanding the environment around Jupiter, where NASA’s Juno spacecraft arrived July 4th. Io spews out gases that eventually fill the Jupiter system, ultimately seeding some of the auroral features seen at Jupiter’s poles (see my note of May 9th 2015). Understanding how these emissions from Io are controlled will help paint a better picture of the Jupiter system.

Source: Scientific American.

IO 2

Source: NASA.

Contrôle des émissions de SO2 depuis l’espace // Monitoring of SO2 emissions from space

drapeau-francaisUn article intitulé « Les satellites découvrent de nouvelles sources de dioxyde de soufre » et  publié le 7 juin 2016 par l’Observatoire de la Terre (Earth Observatory) de la NASA fait un inventaire des émissions de SO2 qui étaient inconnues ou mal connues jusqu’à présent.
En utilisant une nouvelle méthode basée sur les observations satellitaires, les scientifiques ont localisé 75 sources naturelles de SO2, ainsi que 39 autres sources importantes, d’origine humaine et non déclarées. On sait depuis longtemps que lorsqu’il est libéré dans l’atmosphère, le dioxyde de soufre se transforme en acide sulfurique (H2SO4), avec de fines particules qui ont des effets néfastes sur la santé et sur l’environnement.
Afin d’élaborer des inventaires complets et précis, les industries, les organismes gouvernementaux et les scientifiques peuvent désormais utiliser les satellites pour repérer les sources de SO2 non répertoriées. En analysant les données pour la période entre 2005 et 2014, les chercheurs ont découvert 39 sources d’émissions de SO2 non signalées précédemment. Parmi elles, on trouve des centrales thermiques brûlant du charbon, des fonderies et des structures pétrolières et gazières, notamment au Moyen-Orient, au Mexique et dans certaines régions de la Russie. En outre, les scientifiques se sont aperçus que les mesures satellitaires des émissions provenant de certaines sources connues étaient deux à trois fois supérieures à ce qui avait été indiqué précédemment en se référant à des estimations effectuées au sol. Au total, les sources non déclarées et sous-déclarées représentent environ 12 pour cent de toutes les émissions anthropiques de dioxyde de soufre, ce qui est considérable.
L’équipe scientifique a également détecté et localisé 75 sources naturelles de SO2, dont beaucoup se trouvent dans des zones volcaniques sans phénomènes éruptifs, mais qui laissent lentement échapper le dioxyde de soufre. Beaucoup de ces sources volcaniques sont dans des endroits éloignés et non surveillés régulièrement. Ces nouvelles données satellitaires sont donc les premières à fournir des informations annuelles régulières sur les émissions volcaniques passives.
La quantification précise des émissions de SO2 a été rendue possible grâce à deux innovations dans l’interprétation des données satellitaires. La première innovation est une amélioration dans le traitement informatique qui transforme les observations satellitaires brutes fournies par l’Ozone Monitoring Instrument (OMI) – instrument de surveillance de l’ozone – en estimations précises des concentrations de SO2, y compris par les installations pétrolières et les centrales électriques de taille moyenne. La seconde innovation est un nouveau programme informatique qui permet de détecter plus précisément le dioxyde de soufre une fois qu’il s’est dispersé et qu’il a été dilué par les vents. Les chercheurs ont combiné ces données avec des modélisations de la force et de la direction du vent pour suivre les polluants jusqu’à leur source.

Source: NASA.

————————————-

drapeau-anglaisAn article entitled « Satellite Finds Unreported Sources of Sulfur Dioxide  » published on June 7th, 2016 by NASA’s Earth Observatory makes an inventory of SO2 emissions that were unknown or poorly known until now.

Using a new satellite-based method, scientists have located 75 natural and 39 unreported and major manmade sources of SO2 emissions. When released into the atmosphere, SO2 forms sulphuric acid (H2SO4) and fine particles that have significant adverse effects on human health and the environment.

To develop comprehensive and accurate inventories, industries, government agencies, and scientists can now use satellites to help them pinpoint some of the previously missing sources of SO2. In the analysis of data from 2005 to 2014, researchers found 39 previously unreported emission sources. Among them were clusters of coal-burning power plants, smelters, and oil and gas operations, most notably in the Middle East, but also in Mexico and parts of Russia. Moreover, the satellite measurements of emissions from some known sources were two to three times higher than what was previously reported; referring to ground-based estimates. Altogether, the unreported and underreported sources account for about 12 percent of all manmade emissions of sulphur dioxide, which is considerable.

The research team also located 75 natural sources of SO2, many of them on non-erupting volcanoes that slowly leak the gas. Many of these volcanic sources are in remote locations and not routinely monitored, so this satellite-based data set is the first to provide regular annual information on passive volcanic emissions.

The accurate quantification of SO2 emissions was made possible thanks to two innovations in working with the satellite data. The first innovation was an improvement in the computer processing that transforms raw satellite observations from the Ozone Monitoring Instrument (OMI) into precise estimates of SO2 concentrations, including those emitted by oil-related facilities and medium-sized power plants. The second innovation was a new computer program to more precisely detect sulphur dioxide after it had been dispersed and diluted by winds. The researchers combined those data with model estimates of wind strength and direction to trace pollutants back to their sources.

Source: NASA

SO2

Cette carte montre les émissions de SO2 telles qu’elles ont été détectées au Moyen-Orient entre 2007 et 20019 par l’OMI, mis au point par les Néerlandais et les Finlandais, depuis le satellite Aura de la NASA. (Source : NASA)