Une forêt tropicale en Antarctique! // A rainforest in Antarctica!

Une étude initialement publiée dans la revue Nature et relayée par la presse scientifique nous informe que des traces fossiles d’une ancienne forêt tropicale, avec des racines, du pollen et des spores, ont été découvertes en Antarctique Occidental. Elles prouvent qu’il y a environ 90 millions d’années, la région n’était pas recouverte par la glace.
Au milieu du Crétacé (il y a 145 millions à 65 millions d’années), les dinosaures parcouraient la Terre et le niveau des océans était de 170 mètres plus élevé qu’aujourd’hui. La température à la surface de la mer sous les tropiques atteignait 35°C.
Ce climat très chaud a permis à une forêt tropicale de prendre racine en Antarctique. Des restes de cette forêt ont été découverts sous la glace dans une carotte de sédiments prélevée en 2017 par une équipe internationale de chercheurs sur le plancher océanique à proximité du glacier de Pine Island, dans l’ouest de l’Antarctique.
En découvrant la carotte, l’équipe scientifique a tout de suite réalisé qu’elle se trouvait devant quelque chose d’exceptionnel. La couche de sédiments datant d’il y a environ 90 millions d’années présentait une couleur bien différente de celles qui la surmontaient. De retour au laboratoire, les chercheurs ont introduit la carotte dans un scanner CT (Computed Tomography – Tomodensitométrie). L’image numérique obtenue montre un épais réseau de racines parcourant toute la couche de sol prélevée. Elle révèle également des pollens, des spores et les restes de plantes à fleurs très anciens, datant du Crétacé.
En analysant le pollen et les spores, un spécialiste de paléoécologie de l’Université de Northumbria en Angleterre a pu reconstruire la végétation et le climat il y a 90 millions d’années en Antarctique Occidental. Les nombreux restes de plantes indiquent que la côte de l’Antarctique Occidental était recouverte d’une forêt dense tempérée et marécageuse, semblable aux forêts que l’on rencontre en Nouvelle-Zélande aujourd’hui.
La carotte de sédiments a aussi révélé qu’au milieu du Crétacé l’Antarctique Occidental avait un climat doux, avec une température moyenne de l’air d’environ 12°C, semblable à celle de Seattle dans l’État de Washington. Les températures estivales étaient plus chaudes, avec une moyenne de 19°C. Dans les rivières et les marécages, l’eau atteignait probablement jusqu’à 20°C.
S’agissant de la météo, les précipitations à cette époque étaient comparables à celles du Pays de Galles ou de l’Angleterre aujourd’hui. Les températures qui viennent d’être mentionnées sont incroyablement chaudes si l’on prend en compte le fait que l’Antarctique a une nuit polaire de quatre mois, ce qui signifie qu’un tiers l’année n’est pas éclairé par la lumière du soleil avec tous ses bienfaits. Cependant, l’atmosphère était plus chaude surtout parce que la concentration de dioxyde de carbone était élevée, et même plus élevée qu’on ne le pensait, avant la découverte de la carotte de sédiments.
Avant le début de l’étude, la plupart des scientifiques pensaient que la concentration de dioxyde de carbone à l’échelle de la planète pendant le Crétacé était d’environ 1 000 ppm. Cependant, dans leurs modélisations, les chercheurs dû avoir recours à des niveaux de concentration de 1 120 à 1 680 ppm pour pouvoir atteindre les températures moyennes en Antarctique pendant cette période.
Les résultats des manipulations montrent à quel point des concentrations élevées de gaz à effet de serre comme le dioxyde de carbone peuvent faire monter en flèche les températures, au point que l’Antarctique Occidental, aujourd’hui recouvert par la glace, a autrefois abrité une forêt tropicale. De plus, on se rend compte de l’importance de l’effet de refroidissement exercé par les calottes glaciaires d’aujourd’hui.
Grâce à l’étude, les scientifiques savent maintenant qu’il y avait quatre mois consécutifs sans soleil en Antarctique pendant le Crétacé. Toutefois, comme la concentration de dioxyde de carbone était très forte, le climat autour du pôle Sud était tempéré, et le continent dépourvu de glace.
Reste à savoir maintenant quelle a été la cause du refroidissement spectaculaire du climat en Antarctique, avec la formation d’une calotte glaciaire après la période chaude. La réponse à cette question constitue désormais un défi majeur pour les climatologues.

Source: Presse scientifique internationale, comme Live Science.

———————————————-

 A study originally published in the journal Nature and relayed by the scientific press informs us that fossil traces – roots, pollen and spores – of an ancient rainforest have been unearthed in West Antarctica. They prove that about 90 million years ago, the region was not covered with ice.

During the middle of the Cretaceous period (145 million to 65 million years ago), dinosaurs roamed Earth and sea levels were 170 metres higher than they are today. Sea-surface temperatures in the tropics were as hot as 35 degrees Celsius.

This very warm climate allowed a rainforest  to take root in Antarctica. The rainforest’s remains were discovered under the ice in a sediment core that a team of international researchers collected from a seabed near Pine Island Glacier in West Antarctica in 2017.

As soon as the team saw the core, they knew they had something unusual. The layer that had formed about 90 million years ago was a different colour. More particularly, it clearly differed from the layers above it. Back at the lab, the team put the core into a CT (computed tomography) scanner. The resulting digital image showed a dense network of roots throughout the entire soil layer. The dirt also revealed ancient pollen, spores and the remnants of flowering plants from the Cretaceous period.

By analyzing the pollen and spores, a paleoecologist at Northumbria University in England, was able to reconstruct West Antarctica’s 90 million-year-old vegetation and climate. The numerous plant remains indicated that the coast of West Antarctica was a dense temperate, swampy forest, similar to the forests found in New Zealand today.

The sediment core revealed that during the mid-Cretaceous, West Antarctica had a mild climate, with an annual mean air temperature of about 12°C, similar to that of Seattle in Washington State. Summer temperatures were warmer, with an average of 19°C. In rivers and swamps, the water probably reached up to 20°C.

As far as the weather is concerned, the rainfall by that time was comparable to the rainfall of Wales or England, today. These temperatures are impressively warm, given that Antarctica had a four-month polar night, meaning that a third of every year had no life-giving sunlight. However, the world was warmer, in part, because the carbon dioxide concentration in the atmosphere was high, even higher than previously thought, according to the analysis of the sediment core.

Before the start of the study study, the general assumption was that the global carbon dioxide concentration in the Cretaceous was roughly 1,000 ppm. However, in the researchers’ model-based experiments, it took concentration levels of 1,120 to 1,680 ppm to reach the average temperatures during that period in Antarctica.

These findings show how potent greenhouse gases like carbon dioxide can cause temperatures to skyrocket, so much so that today’s freezing West Antarctica once hosted a rainforest. Moreover, it shows how important the cooling effects of today’s ice sheets are.

Thanks to the study, scientists now know that there could easily be four straight months without sunlight in the Cretaceous. But because the carbon dioxide concentration was so high, the climate around the South Pole was nevertheless temperate, without ice masses.

The question to be answered now is to know what caused the climate to dramatically cool with ice sheets forming again after Antarctic’s warmer period. The answers are now a major challenge for the international climate research community.

Source : International scientific press, like Live Science.

Vues de la forêt primaire sur l’Ile de Vancouver au Canada

Photos: C. Grandpey

La dernière éruption de Yellowstone // Yellowstone Volcano’s last eruption

La plupart des scientifiques s’accordent pour dire que la dernière grande éruption du super volcan de Yellowstone s’est produite il y a environ 630 000 ans. Plus récemment, des géologues ont découvert trois phases éruptives distinctes remontant à 2,1 millions d’années, 1,3 million d’années et 630 000 ans.
L’éruption la plus récente, il y a 630 000 ans, a déposé une épaisse couche de cendre qui a recouvert une grande partie du centre-ouest des États-Unis. On estime qu’elle atteint par endroits 200 mètres d’épaisseur. Étant donné que cette couche de cendre s’est tassée sous le poids des sédiments, on peut raisonnablement penser qu’elle serait suffisamment épaisse pour recouvrir aujourd’hui la plupart de nos gratte-ciels.
Il ne fait aucun doute que l’éruption a envoyé une énorme quantité de cendre dans l’atmosphère et que cette cendre a recouvert une grande partie des États-Unis. Elle a également eu d’importantes conséquences sur le climat et la vie sur Terre. Chaque éruption a eu un impact mortel immédiat à cause des retombées de cendre. Il y a aussi eu un impact à plus long terme à cause de la faible capacité des plantes à opérer la photosynthèse et des animaux à respirer dans une atmosphère envahie par la cendre et les gaz nocifs.
Une étude récente par une équipe scientifique de l’Université de Californie à Santa Barbara a abouti à la conclusion que la dernière éruption de Yellowstone a connu deux phases successives. Les chercheurs ont en effet découvert deux couches de cendre volcanique dans les sédiments océaniques du Bassin de Santa Barbara. Ils ont prélevé des empreintes chimiques des couches de cendre et constaté qu’elles provenaient d’une double éruption du super volcan de Yellowstone.
Pour étayer une telle affirmation, deux conditions devaient être présentes dans le Bassin de Santa Barbara. Tout d’abord, pour s’assurer que les couches de cendre volcanique étaient intactes dans l’océan côtier et non modifiées par les vers et autres mollusques, l’équipe scientifique a choisi une zone où les eaux des fonds marins étaient anoxiques. Cela signifie qu’il n’y avait pas assez d’oxygène pour que les animaux puissent venir gratter et endommager les couches de cendre. Au vu des résultats, les scientifiques furent convaincus qu’il y a eu deux événements éruptifs distincts à Yellowstone.
Le point suivant à éclaircir était la distinction dans le temps entre les deux événements volcaniques. La présence simultanée de sédiments terrigènes et de coquilles de foraminifères pélagiques dans le bassin de Santa Barbara a permis à l’équipe scientifique d’identifier distinctement les deux couches de cendre. De plus, les coquilles des foraminifères ont été utilisées pour déterminer la température de l’eau de mer en surface au moment où elles étaient encore vivantes.
Une fois obtenue la certitude que les couches de cendre appartenaient à des événements distincts et provenaient du super volcan de Yellowstone, les scientifiques ont pu compiler d’autres informations sur les événements. La datation a montré que les éruptions se sont produites à environ 170 ans d’intervalle. Cela signifie que deux générations successives d’animaux ont probablement été témoins d’une éruption du super volcan de Yellowstone au cours de leur vie.
En outre, les chercheurs ont constaté que les éruptions ont eu de vastes répercussions à l’échelle mondiale. Ils ont acquis la certitude que chaque éruption a causé le refroidissement d’environ 3 degrés Celsius de l’océan. Ils l’ont prouvé en mesurant les isotopes dans la coquille de foraminifères. Les foraminifères sont de petits organismes photosynthétiques qui flottent près de la surface de l’océan. Ils absorbent différents rapports d’isotopes d’oxygène lors de la fabrication de leur carapace à base de carbonate, en fonction de la température de l’eau océanique environnante. En mesurant avec précision le rapport de ces isotopes et en les comparant aux normes sur la planète dans son ensemble, les scientifiques ont été en mesure de déterminer la température de surface de l’océan  pendant la courte période où ces foraminifères étaient vivants. En effectuant ces mesures sur une carotte de sédiments, ils ont pu établir une courbe de la température de la surface de la mer à travers le temps.
C’est ainsi que l’équipe géologique de Santa Barbara est arrivée à la conclusion que chacune des deux éruptions du super volcan de Yellowstone a provoqué une baisse de la température de l’océan d’environ 3 degrés Celsius. Cela contraste avec la tendance générale au réchauffement de la planète à l’époque. Les deux éruptions ont refroidi temporairement la planète et inversé la tendance au réchauffement.
La double éruption a certainement provoqué des hivers volcaniques dans le monde car les cendres et les gaz émis dans l’atmosphère ont bloqué temporairement le soleil. Une chose est certaine, le super volcan de Yellowstone entrera de nouveau en éruption à l’avenir. La date exacte de cet événement est bien sûr inconnue, de même que son ampleur. A l’heure actuelle, nous ne savons pas comment nous pourrons réagir pour tenter d’atténuer son impact et nous protéger.
Source: Forbes.

———————————-

Most scientists agree on the fact that the last major eruption of Yellowstone super volcano occurred about 630,000 years ago. More recently, geologists have deduced three separate eruption events dating back 2.1 million years ago, 1.3 million years ago, and 630,000 years ago.

The most recent volcanic eruption 630,000 years ago produced a massive volcanic ash bed which covered much of western central United States. It is estimated that the maximum thickness the volcanic ash is up to 200 metres. Given the ash has since compacted due to the weight of overlying sediment, the ash bed deposited would have been thick enough to cover most of our modern skyscrapers.

There is little doubt that the eruption released a catastrophic amount of ash into the atmosphere and blanketed a large portion of the United States. It also had a significant impact on both climate and life. During one of these eruptions, there was an immediate deadly impact of widespread ash fallout. However, there was also a more prolonged deadly impact of reduced ability for plants to photosynthesize and animals to respire under a sky filled with ash and harmful gases.

Recent research by a U.C. Santa Barbara scientific team has found that the latest eruption from the Yellowstone caldera was, in fact, two eruptions that occurred back to back. The research team deduced this after finding two layers of volcanic ash in ocean sediments at the Santa Barbara Basin. The team was able to chemically fingerprint the ash layers to identify that they were both sourced from the Yellowstone supervolcano.

However, to do this, two ideal conditions had to line up in the Santa Barbara Basin.

First, to ensure the volcanic ash beds were preserved in the coastal ocean and not reworked by worms or mollusks, the team selected a region where the ocean bottom waters were anoxic. This means there was no oxygen for critters to churn and damage ash bed layers. Given that, scientists are convinced there were two separate events.

The next concern is the distinction in time between the two volcanic events. The combination of terrigenous sediment and pelagic foraminifera shells in the Santa Barbara Basin allowed the scientific team to distinctly identify the two ash beds. In addition, the foraminifera shells were used to deduce the surface sea water temperature at the time when they were alive.

Once the team was able to determine that both ash beds were separate events and sourced from the Yellowstone supervolcano, they were able to compile some information about the events. Based on age dating, the eruption events are approximately 170 years apart from each other. This means potentially two successive generations of animals witnessed a Yellowstone supervolcano eruption in their lifetime.

In addition, researchers found that there were broad global impacts from the eruptions. The team found that each eruption caused the ocean to cool by about 3 degrees Celsius. They determined this by measuring the isotopes within foraminifera shell. Foraminifera are small photosynthetic organisms that float near the surface of the ocean. They absorb different ratios of oxygen isotopes when making their carbonate shell, dependent on the temperature of the surrounding ocean water. By precisely measuring the ratio of these isotopes and comparing them with standards around the world, scientists can determine the surface ocean temperature during the short time when these foraminifera were alive. By making these measurements throughout a sediment core, scientists can develop a curve of sea surface temperature through time.

This was how the U.C. Santa Barbara geology team concluded that each of the two Yellowstone supervolcano eruptions caused an approximately 3 degrees Celsius drop in ocean temperature. This was in contrast to the general trend toward a warming planet at the time. Both eruptions halted and cooled the planet temporarily, reversing the warming trend.

This sent the world into volcanic winters, whereby ash and gasses emitted into the atmosphere temporarily block out the sun and cool the planet. One thing is certain, that Yellowstone volcano will erupt again in the future. However, the exact timing is still unknown. As is the magnitude of the next eruption and what humans can do to try to mitigate it or protect themselves.

Source : Forbes.

Photo: C. Grandpey

Etude de l’Orakei Basin à Auckland (Nouvelle Zélande) // Study of Orakei Basin in Auckland (New Zealand)

drapeau-francaisEn Nouvelle-Zélande, la ville d’Auckland a été construite sur un champ volcanique potentiellement actif. L’Orakei Basin (voir image satellite ci-dessous) est aujourd’hui un endroit très prisé des amateurs de sports nautiques dont beaucoup ignorent probablement qu’il s’agit de l’un des volcans de l’Auckland Volcanic Field. . Il présente un cratère d’explosion d’environ 700 mètres de diamètre, bordé d’un anneau de tuf. Après une éruption il y a environ 85 000 ans, le cratère s’est rempli d’un lac d’eau douce dont le déversoir se situait dans les environs du pont actuel sur Orakei Road. Lorsque le niveau de la mer s’est élevé au terme de la dernière période glaciaire, le lac, qui était alors devenu un marécage, a été envahi par la mer et est devenu le lagon que nous connaissons aujourd’hui.
Les scientifiques ont foré jusqu’à plus de 100 mètres sous l’Orakei Basin afin de mettre à jour l’histoire éruptive de l’ancien site d’Auckland. Les échantillons récemment extraits d’anciens dépôts de sédiments lacustres donneront des détails sur les éruptions volcaniques qui ont secoué la région sur une période qui remonte probablement à 140 000 ans. L’activité éruptive des 53 volcans de l’Auckland Volcanic Field remonte à quelque 250 000 ans, avec les événements les plus récents à Rangitoto il y a entre 550 et 600 ans. Nous savons déjà beaucoup de choses sur la région, en particulier sur les 50 000 dernières années, mais nos connaissances sont très réduites sur les périodes éruptives précédentes. .
Bien qu’il soit devenu un estuaire peu profond suite à l’activité explosive qui l’a formé, l’Orakei Basin a surtout été, au cours de son histoire, un lac d’eau douce profond au fond duquel se sont accumulés des sédiments, des cendres volcaniques et des vestiges biotiques, autrement dit les restes d’interactions du vivant sur le vivant dans cet écosystème. Les sédiments lacustres se sont, pour la plupart, déposés en fines couches et joueront un rôle essentiel dans la compréhension de l’histoire des éruptions passées dans et autour de la ville d’Auckland. .
Tout en permettant une meilleure compréhension des risques volcaniques à Auckland, les échantillons permettront également aux scientifiques de reconstituer le climat de la région au cours des 100 000 dernières années. Ils pourront ainsi établir une comparaison avec des échantillons correspondants recueillis sous la glace de l’Antarctique et ailleurs sur la planète, à une époque où on essaye de tirer des leçons de périodes plus chaudes du passé de la Terre.
Source: New Zealand Herald.

———————————-

drapeau anglaisIn New Zealand, Auckland was built on a potentially active volcanic field. A popular place for watersports today is the Orakei Basin (see satellite image below). It is one of the volcanoes in an area known as the Auckland Volcanic Field. It has an explosion crater around 700 metres wide, with a surrounding tuff ring. After an eruption that occurred about 85,000 years ago, it became a freshwater lake that had an overflow stream in the vicinity of present Orakei Road bridge. As sea level rose after the end of the Last Ice Age, the lake, which by then had shallowed to a swamp, was breached by the sea and has been a lagoon ever since.
Scientists have probed more than 100 metres beneath Orakei Basin in order to reveal the explosive history of ancient Auckland. The samples they have just retrieved from ancient deposits of lake sediment will detail volcanic eruptions that have taken place in the region over a period potentially stretching back 140,000 years. Eruptive activity among the 53 volcanoes of the Auckland Volcanic Field went back some 250,000 years – and most recently, at Rangitoto, between 550 and 600 years ago. We know quite a lot, especially about the last 50,000 years, but prior to that, we have very little understanding of the eruptive events.
Although it’s now a shallow estuary, following the volcanic explosion that formed it, the Orakei Basin was for most of its history a deep freshwater lake collecting sediment, volcanic ash and biotic remains. These lake sediments were mostly very finely layered and would be crucial in compiling the most detailed history of past eruptions in and around the city area.
Along with a better understanding of Auckland’s volcanic risks, the samples might also help scientists reconstruct the region’s climate over the past 100,000 years. These would provide a comparison to corresponding records recovered from deep below the ice in Antarctica and elsewhere on the planet, at a time scientists are racing to learn lessons from warmer periods in the Earth’s past.
Source : New Zealand Herald.

Orakei Basin

Image satellite de l’Orakei Basin (Source: Google maps)