La musique du Kilauea (Hawaii) // Kilauea’s music (Hawaii)

Différentes sortes de perturbations peuvent affecter le réservoir magmatique ou le lac de lave au sommet du Kilauea : arrivée de poches de gaz, effondrements des parois du cratère dans le lac de lave, etc. Lorsqu’un réservoir magmatique ou un lac de lave est perturbé, le fluide qu’il contient peut réagir de diverses manières. Dans un lac de lave, comme celui qui existait de 2008 à 2018 dans le cratère de l’Halema’uma’u, ces mouvements de fluides peuvent parfois être observés sous forme d’ondulations ou de clapotis à la surface du lac.
Il est possible de détecter des mouvements de magma en profondeur en utilisant des sismomètres pour mesurer les vibrations du sol. Toutefois, les signaux sismiques générés par le mouvement du magma sont souvent différents des autres types de signaux sismiques. Comparé aux séismes conventionnels, le magma en mouvement génère habituellement des vibrations relativement lentes au moment où le sol monte et descend pendant un laps de temps de plusieurs secondes ou dizaines de secondes.
Pendant des décennies, les scientifiques ont interprété ces signaux sismiques comme des preuves de migration ou d’accumulation du magma en profondeur, susceptibles d’annoncer une éruption imminente. Ces dernières années, toutefois, ils ont acquis de nouvelles méthodes pour interpréter ces signaux sismiques et pour résoudre les propriétés des systèmes magmatiques.
Un réservoir magmatique ou un lac de lave vibrent plus fortement à certaines fréquences – les fréquences de résonance – qui dépendent de la géométrie du réservoir magmatique ou du lac de lave, mais aussi des propriétés du magma ou de la lave qui s’y trouve, comme la température et la teneur en gaz. Ces vibrations ressemblent à la façon dont les notes de musique produites par un instrument comme une flûte de pan sont liées à la forme de l’instrument et aux propriétés de l’air qu’il contient.
Si un magma ou une lave est très fluide, une seule perturbation peut faire résonner le corps magmatique pendant des dizaines de minutes (voir figure ci-dessous).
Les variations dans les fréquences de résonance peuvent indiquer des changements dans la quantité de gaz contenue dans le magma ou la lave, facteur important pour comprendre son potentiel éruptif. De plus, des fluctuations dans la durée de résonance peuvent indiquer des changements dans la température du magma ou de la lave, ce qui indique aux scientifiques une possible arrivée de magma juvénile à haute température.
Une telle résonance a permis de déterminer la géométrie du système magmatique sommital peu profond du Kilauea. Les scientifiques ont constaté que le conduit reliant le réservoir sommital peu profond au lac de lave dans le cratère de l’Halema’uma’u de 2008 à 2018 mesurait plus de 15 mètres de large. Cette résonance a également révélé la dynamique complexe du magma au cours de la dernière décennie, ce qui explique le niveau d’activité élevé du volcan Kilauea.
Source : HVO.
L’article ne précise pas si le Kilauea vibre ces jours-ci, mais l’activité dans le cratère de l’Halena’uma’u est relativement faible. La lave alterne apparitions et disparitions sur le plancher du cratère.

—————————————-

Different types of disturbances may affect Kilauea’s summit magma reservoir or the lava lake : rising gas pockets, the fall of wall rocks into a lava lake, and so on. When a body of magma or lava is disturbed, the fluid in it can respond in a variety of ways. In a lava lake, such as the one that existed from 2008–2018 in Halema‘uma‘u crater, these fluid motions can sometimes be observed as ripples or sloshing of the surface.

One can also detect deeper magma motion by using seismometers to measure ground vibrations. The seismic signals generated by magma motion are often distinct from other types of seismic signals. Compared to normal earthquakes, magma motion usually produces relatively slow vibrations, where the ground rises and falls over several seconds or tens of seconds.

For decades scientists have been interpreting these seismic signals as evidence of underground magma migration or accumulation, which can be used to look for signs that might indicate an impending eruption. In recent years, scientists have been learning new methods to use these seismic signals to resolve properties of underground magma systems.

Magma or lava bodies vibrate most strongly at certain frequencies – resonant frequencies – that depend on the body’s geometry and the properties of the magma or lava it contains, such as temperature and gas content. This is similar to how the musical notes produced by an instrument like a pan flute depend on the instrument’s shape and the properties of the air in it.

If a magma or lava is very fluid, then a single perturbation can cause the magma body to resonate for tens of minutes (see figure below).

Changes in the resonance frequencies can indicate changes in the amount of gas contained within the magma or lava, which is important for understanding its eruptive potential. Additionally, changes in the resonance duration can indicate changes in the magma or lava temperature, which tells scientists if fresh hot magma is being brought up from deeper in the earth.

Such resonance has helped to reveal Kilauea’s shallow summit magma system geometry, for example suggesting that the conduit connecting its shallow summit magma reservoir with the overlying lava lake in Halema‘uma‘u from 2008–2018 was more than 15 meters wide. It has also revealed complex magma dynamics over the past decade which inform the restless nature of Kilauea Volcano.

Source : HVO.

The article does not specify whether Kilauea is vibrating these days, but activity within Halena’uma’u Crater is quite low, with lava appearing or disappearing on the crater floor.

Le graphique du haut montre le tracé d’un séisme classique peu profond, de magnitude M 2,0 enregistré en 2013 à quelques kilomètres au sud du sommet du Kilauea.

Le tracé du bas montre un enregistrement sismique, effectué en 2013, de la résonance du magma lors de l’impact produit par un rocher qui s’était détaché d’une paroi du cratère de l’Halema’uma’u. On notera les différentes échelles de temps; le séisme classique n’a duré qu’une vingtaine de secondes alors que chaque cycle d’oscillation du magma dans le graphique du bas a duré 40 secondes et les vibrations ont continué pendant plus de 20 minutes.

Réservoir et chambre magmatiques à Yellowstone // Magma reservoir and chamber at Yellowstone

drapeau francaisUne étude récente réalisée par des scientifiques de l’Université de l’Utah et publiée dans la revue Science fournit pour la première fois une vue complète du système d’alimentation du volcan de Yellowstone. L’étude montre qu’il existe un énorme réservoir magmatique sous la chambre magmatique que l’on connaissait déjà.
Le réservoir se situe entre 20 et 45 kilomètres sous le volcan de Yellowstone et il est 4,4 fois plus grand que la chambre magmatique peu profonde que l’on connaît depuis longtemps.
Contrairement à la perception populaire, la chambre et le réservoir magmatiques ne sont pas remplis de roche fondue. Au lieu de cela, la roche chaude est, la plupart du temps solide avec une texture spongieuse, avec des poches de roche en fusion à l’intérieur. La chambre magmatique supérieure  contient environ 9% de la roche en fusion (ce qui correspond aux estimations antérieures de 5% à 15%) tandis que le réservoir inférieur en contient environ 2%.
Les chercheurs soulignent que la chambre magmatique supérieure a été la source directe de trois éruptions cataclysmales de la caldeira de Yellowstone il y a 2.000.000, 1.200.000 et 640 000 ans. Ces chiffres restent valables après la découverte du réservoir sous-jacent qui alimente la chambre supérieure.
Des recherches antérieures ont montré que le panache qui alimente le point chaud de Yellowstone s’élève d’une profondeur d’au moins 710 kilomètres dans le manteau terrestre. Certains chercheurs pensent même qu’il provient d’une profondeur de 2300 km. Le panache s’élève depuis une zone située au nord-ouest de Yellowstone sur une largeur d’environ 80 km. Il s’étale ensuite comme une crêpe lorsqu’il atteint le manteau supérieur à environ 65 km de profondeur. Des études antérieures par les chercheurs de l’Utah ont indiqué que le sommet du panache avait une largeur de 480 km. La nouvelle étude suggère qu’il n’est probablement pas aussi large, mais les données actuelles ne sont pas assez précises pour faire une telle affirmation.

La roche partiellement fondue s’élève sous forme de dykes depuis le sommet du panache à 65 km de profondeur pour atteindre la base du réservoir magmatique d’un volume de 47000 kilomètres cubes, à environ 45 km de profondeur. Le sommet de ce réservoir (qui vient d’être découvert) se trouve à environ 19 km de profondeur. Le réservoir mesure 48 km au nord-ouest au sud-est et 70 km du sud-ouest au nord-est. La chambre supérieure d’un volume de 10 420 kilomètres se trouve sous la caldeira de Yellowstone qui mesure 65 km sur 40. Elle a la forme d’une poêle à frire gigantesque et se trouve entre 5 et 15 km sous la surface, avec le « manche » qui s’élève en direction du nord-est. La chambre mesure environ 30 km du nord-ouest au sud-est et 90 km du sud-ouest au nord-est. Le « manche » est la partie longue et la moins profonde de la chambre ; il s’étire sur 16 km au nord-est de la caldeira. Les scientifiques pensaient autrefois que la chambre magmatique peu profonde avait un volume de 4200 kilomètres cubes. En fait, il est 2,5 fois plus grand.
La découverte d’un réservoir sous la chambre magmatique résout un mystère de longue date: On se demandait pourquoi le sol et les sources géothermales de Yellowstone émettent plus de CO2 que par le seul gaz en provenance de la chambre magmatique. L’hypothèse d’un réservoir profond avait été avancée en raison de cet excès de CO2 émis par la roche en fusion ou partiellement fondue.
Pour effectuer cette nouvelle étude, les chercheurs de l’Utah ont développé une technique qui combine deux types d’informations: des données sismiques locales détectées dans l’Utah, l’Idaho, la Teton Range et Yellowstone par l’Université de l’Utah et les données de stations plus éloignées détectées par le réseau sismique EarthScope (financé par la National Science Foundation) qui a été utilisé pour cartographier la structure souterraine des 48 états situés plus au sud.
Le réseau sismique de l’Utah inclut des sismomètres installés à proximité des uns des autres, ce qui permet d’obtenir de meilleures images de la croûte peu profonde sous Yellowstone, tandis que les sismomètres de EarthScope permettent d’obtenir des images des structures plus profondes.
Source: presse scientifique américaine.

 ———————————————-

drapeau anglaisA new University of Utah study in the journal Science provides the first complete view of the plumbing system that supplies hot and partly molten rock from the Yellowstone hotspot to the Yellowstone volcano. The study revealed a gigantic magma reservoir beneath the previously known magma chamber.

The reservoir lies 20 to 45 kilometres beneath the Yellowstone volcano, and it is 4.4 times larger than the shallower, long-known magma chamber.

For the first time, the researchers have imaged the continuous volcanic plumbing system under Yellowstone, which includes the upper magma chamber plus a lower reservoir that had never been imaged before and that connects the upper chamber to the Yellowstone hotspot plume below.

Contrary to popular perception, the magma chamber and magma reservoir are not full of molten rock. Instead, the rock is hot, mostly solid and spongelike, with pockets of molten rock within it. The upper magma chamber averages about 9% molten rock (which corresponds to earlier estimates of 5% to 15%) and the lower magma reservoir includes about 2% molten rock.

The researchers point out that the previously known upper magma chamber was the immediate source of three cataclysmic eruptions of the Yellowstone caldera 2 million, 1.2 million and 640,000 years ago. This is not changed by the discovery of the underlying magma reservoir that supplies the magma chamber.

Previous research has shown the Yellowstone hotspot plume rises from a depth of at least 710 km in the Earth’s mantle. Some researchers suspect it originates 2,300 km deep. The plume rises from the depths northwest of Yellowstone. The plume conduit is roughly 80 km wide as it rises through Earth’s mantle and then spreads out like a pancake as it hits the uppermost mantle about 65 km deep. Earlier Utah studies indicated the plume head was 480 km wide. The new study suggests it may be smaller, but the data aren’t good enough to know for sure. Hot and partly molten rock rises in dikes from the top of the plume 65 km deep up to the bottom of the 47,000 cubic-kilometre magma reservoir, about 45 km deep. The top of this newly discovered magma reservoir is about 19 km deep. The reservoir measures 48 km northwest to southeast and 70 km southwest to northeast. The 10,420 cubic-kilometre upper magma chamber sits beneath Yellowstone’s 65-by-40 km caldera. It is shaped like a gigantic frying pan about 5 to 15 km beneath the surface, with a « handle » rising to the northeast. The chamber is about 30 km from northwest to southeast and 90 km southwest to northeast. The handle is the shallowest, long part of the chamber that extends 16 km northeast of the caldera.

Scientists once thought the shallow magma chamber was 4,200 cubic kilometres. Actually, it is 2.5 times bigger than previously thought.

Discovery of the magma reservoir below the magma chamber solves a longstanding mystery: Why Yellowstone’s soil and geothermal features emit more CO2 than can be explained by gases from the magma chamber. A deeper magma reservoir had been hypothesized because of the excess carbon dioxide, which comes from molten and partly molten rock.

For the new study, the Utah researchers developed a technique to combine two kinds of seismic information: Data from local quakes detected in Utah, Idaho, the Teton Range and Yellowstone by the University of Utah Seismograph Stations and data from more distant quakes detected by the EarthScope (funded by the National Science Foundation) array of seismometers, which was used to map the underground structure of the lower 48 states.

The Utah seismic network has closely spaced seismometers that are better at making images of the shallower crust beneath Yellowstone, while EarthScope’s seismometers are better at making images of deeper structures.

Source : American scientific press.

Yellowstone-reservoir

Cette coupe sud-ouest / nord-est sous Yellowstone a été obtenue grâce à l’imagerie sismique.

(Source: University of Utah)