La lune et le Ruapehu (Nouvelle Zélande) // The Moon and Mt Ruapehu (New Zealand)

Des scientifiques américains du Jet Propulsion Laboratory (JPL) de la NASA ont établi un lien entre les cycles des marées et l’éruption soudaine du Ruapehu en 2007. Ils pensent même que cette corrélation apparente pourrait offrir une solution pour prévoir les futures éruptions. Cependant, des scientifiques néo-zélandais ont émis des doutes et critiquent la méthodologie utilisée pour cette étude qui a été publiée dans la revue Scientific Reports.
L’étude a montré comment, juste avant l’éruption soudaine du Ruapehu le 25 septembre 2007, l’activité sismique à proximité du cratère correspondait étroitement aux changements bimensuels de la force de la marée. En examinant les données couvrant une douzaine d’années, les chercheurs ont constaté que cette corrélation entre l’amplitude du signal sismique et les cycles des marées est apparue seulement dans les trois mois précédant l’éruption de 2007.
Les marées terrestres sont gérées quotidiennement par l’attraction lunaire. Au cours des pleines et nouvelles lunes, l’attraction lunaire s’aligne avec celle du soleil, ce qui rend l’amplitude des marées un peu plus importante. Au cours du premier et du dernier quartier, l’amplitude des marées est légèrement plus faible. Alors que les marées sont généralement considérées comme une montée et une baisse des eaux, les contraintes gravitationnelles peuvent également affecter la croûte de notre planète. Beaucoup de recherches ont été effectuées afin de savoir si la force de marée peut déclencher des éruptions volcaniques, mais aucune réponse vraiment fiable n’a été fournie.
Les chercheurs du JPL qui ont travaillé sur le Ruapehu ont adopté un angle d’approche différent et ont recherché s’il existait un signal détectable associé à la force des marées et qui pourrait être une indication de l’approche d’une éruption. Ils ont choisi d’étudier le Ruapehu, d’une part parce que son activité est étroitement surveillée depuis des années par GNS Science, et d’autre part  parce qu’ils étaient particulièrement intéressés par les données provenant des capteurs sismiques situés près du cratère.
L’équipe scientifique s’est penchée sur 12 années de données sismiques et a recherché les périodes où apparaissait une corrélation entre la sismicité et les cycles lunaires. Les chercheurs ont constaté que pendant la majeure partie de cette période de 12 ans, il n’existait pas de corrélation entre l’activité sismique et les cycles lunaires, à l’exception des trois mois qui ont précédé l’éruption phréatique de 2007. Tandis que les fluctuations de l’amplitude sismique étaient subtiles, la force de la corrélation avec le cycle des marées atteignait 5 sigma, ce qui signifie que la probabilité que ce modèle soit dû au hasard était d’environ un sur 3,5 millions. [NDLR : 5 sigma est une mesure de la confiance des scientifiques à l’égard de leurs résultats.]
Pour comprendre comment la force des marées a pu avoir une influence sur le comportement du Ruapehu pendant ces trois mois, les chercheurs ont utilisé un modèle de tremor sismique qu’ils avaient développé précédemment. Il montre que lorsque la pression de la poche de gaz sous le volcan atteint un niveau critique – niveau auquel une éruption phréatique devient possible – les différentes contraintes associées au changement de force des marées étaient suffisantes pour changer l’amplitude du tremor. Ils sont persuadés que ce fut le cas en 2007. Lorsque la pression dans le système est devenue critique, elle est devenue sensible aux marées. Les scientifiques ont pu montrer que le signal était détectable. Ils voudraient maintenant recueillir plus de données concernant d’autres éruptions sur d’autres volcans pour voir si le signal de marée est apparu ailleurs.
Comme je l’ai écrit plus haut, les scientifiques néo-zélandais ont exprimé des doutes sur les résultats de l’étude et ont regretté l’absence de nombreux paramètres sismiques. Un chercheur néo-zélandais a déclaré que « l’étude considère le mécanisme comme un piégeage des gaz provoqué par des changements dans la perméabilité des roches, mais n’aborde pas directement la résistance de ces roches […] Avec seulement deux événements abordés par l’étude – et l’un d’eux pas « prévu » par le modèle – je ne suis pas sûr qu’elle puisse avoir une valeur prédictive. »
Source: New Zealand Herald.

Cette étude m’intéresse car j’ai moi-même fait des observations sur la corrélation possible entre la pression atmosphérique et l’activité éruptive en milieu strombolien. Vous trouverez un résumé de cette étude dans la colonne de gauche de ce blog.

——————————————

US scientists at NASA’s Jet Propulsion Laboratory (JPL) have linked tidal cycles to Mt Ruapehu’s surprise eruption in 2007, and even suggest the apparent correlation could offer a new way to predict future eruptions. However, New Zealand scientists have cast doubt over that idea and questioned the methodology used for the study which was recently published in the journal Scientific Reports..

The study indicated how, just before Ruapehu’s surprise eruption on September 25th, 2007, seismic tremors near its crater became tightly correlated with twice-monthly changes in the strength of tidal forces. Looking at data for this volcano spanning about 12 years, the researchers found that this correlation between the amplitude of seismic tremor and tidal cycles developed only in the three months before this eruption.

Earth’s tides rise and fall daily due to the gravitational tug of the moon as the Earth rotates.

In full and new moons, the lunar gravitational pull lines up with that of the sun, which makes the daily tidal bulges a little larger during those moon phases. During the first and third-quarter moons, the daily tidal bulge is slightly smaller. While tides are generally thought of as rising and falling waters, gravitational stresses can also affect the planet’s solid crust. A lot of research has been focused on whether or not tidal forces can trigger eruptions, but there is no definitive evidence that they do.

The Mt Ruapehu researchers wanted to take a different angle with their study and look at whether there was some detectable signal associated with tidal forces that could tell us something about a volcano’s criticality. The researchers chose to study Ruapehu partly because its activity has been closely monitored for years by GNS Science, and were particularly interested in data from seismic sensors located near the crater.

The team worked through 12 years of seismic data, looking for any period when the seismicity was correlated with lunar cycles. They found that for most of that period, there was no correlation between tremor and lunar cycles, except the three months before 2007’s phreatic eruption. While the fluctuations in seismic amplitude were subtle, the strength of the correlation to the tidal cycle was as strong as 5 sigma, meaning that the probability that pattern arose by chance was about one in 3.5 million.

To understand how tidal forces may have been affecting Ruapehu during those three months, the researchers used a model of seismic tremor that they had developed previously. It suggested that when the pressure of the gas pocket beneath the volcano reaches a critical level — a level at which a phreatic eruption was possible — the differing stresses associated with changing tidal forces were enough to change the amplitude of tremor. They are persuaded it was what happened in 2007. When the pressure in the system became critical, it became sensitive to the tides. The scientists were able to show that the signal was detectable. They would like to collect more data from other eruptions and other volcanoes to see if the tidal signal showed up elsewhere.

As I put it above, New Zealand scientists expressed doubts about the results of the study and explained that many seismic parameters were missing. One NZ researcher said that « the paper considers the mechanism to be one of gas trapping driven by changes in rock permeability, but doesn’t directly address the strength of this rock […] With only two events addressed by the paper – and one of them not « predicted » by the model – I am not confident that it would have any predictive value. »

Source: New Zealand Herald.

I was interested in this study as I have myself made observations about the possible correlation between atmospheric pressure and Strombolian activity. You will find an abstract of this study in the left-hand column of this blog.

Photos: C. Grandpey

Des volcans boucliers sur la Lune? // Shield volcanoes on the Moon ?

L’avènement de nouvelles technologies de haute précision, comme la topographie haute résolution, a conduit les scientifiques à réexaminer des domaines et des processus admis jusqu’à présent, et à les interpréter parfois différemment. C’est le cas de la science qui entoure la Lune. La 42ème Conférence sur la Science Lunaire et Planétaire qui s’est tenue en novembre 2017 à Houston (Texas) a mis en lumière de nouvelles approches scientifiques sur l’histoire et les processus lunaires.
Les dernières études portent sur les volcans boucliers. Que ce soit Olympus Mons sur Mars (avec 600 kilomètres de large et 27 km de haut) ou ceux sur Vénus, les volcans boucliers ont toujours été considérés comme une expression du volcanisme sur tous les corps rocheux du système solaire; toutefois, la Lune faisait figure d’exception. Les volcans boucliers que l’on peut observer sur Terre varient de quelques kilomètres à plus de 200 km pour la Grande Ile d’Hawaï, si on considère les édifices hawaiiens jusqu’à leur base sur le fond de l’Océan Pacifique.
Les volcans boucliers présents sur Mars, Vénus et sur Terre semblaient absents sur la Lune. Avant que les astronautes d’Apollo 11 visitent le Mer de  la Tranquillité – Mare Tranquillitatis – en 1969, les scientifiques ont toujours interprétés ces étendues sombres – ou maria – sur la Lune comme des plaines dont la surface était le produit de l’activité volcanique. Beaucoup de ces caractéristiques volcaniques tendent à se regrouper dans les provinces concentrées à l’ouest.
Les roches qui composent les mers lunaires sont des basaltes, le type le plus commun de roches ignées observé dans le système solaire. Sur Terre, le magma qui les génère présente une très faible viscosité. Sur la Lune, les maria ont été formées à partir d’éruptions qui ont émis d’importants volumes de lave fluide qui se sont épanchés sur des centaines de kilomètres. Ici et là à l’intérieur de ces anciennes mers lunaires, on observe de nombreuses petites structures volcaniques qui étaient considérées auparavant comme la seule manifestation volcanique à partir d’une bouche centrale sur la Lune.
Lorsque la topographie de la Lune a été cartographiée pour la première fois grâce à l’altimétrie laser en 1994, on a distingué des ensembles de nombreux petits volcans présents sur des points élevés quasi-circulaires, avec un faible relief, et en forme de bouclier. Les scientifiques ont constaté que ces grandes ondulations topographiques sont constituées de lave basaltique et présentent des concentrations de structures volcaniques. Une telle structure sur Vénus ou Mars est classée comme volcan bouclier; par conséquent, ces structures semblables sur la Lune sont interprétées comme étant, elles aussi, des volcans boucliers. Sept de ces grandes structures ont été découvertes sur la Lune. Elles ont des diamètres de 66 à près de 400 kilomètres et de 600 à plus de 3200 mètres de hauteur. De telles tailles et formes rappellent fortement les grands volcans boucliers sur Terre, Vénus et Mars. Les pentes de ces volcans sont très faibles, généralement de quelques degrés, comme c’est le cas pour des structures façonnées par de la lave très fluide. Ces volcans boucliers lunaires présentent également des dômes et des cônes, ainsi que des caractéristiques d’effondrement que l’on rencontre sur les volcans boucliers terrestres.
Bien que les scientifiques restent persuadés que ces structures lunaires sont des volcans boucliers, cette nouvelle interprétation ne saurait être définitive. En effet, contrairement à la plupart des volcans boucliers sur les autres planètes, aucun des volcans boucliers lunaires n’a de caldeira. Il faut toutefois noter que de nombreux volcans de ce type, en particulier ceux de Vénus, ne montrent pas, eux non plus, de caldeira centrale. De plus, alors que la preuve de la présence de certains volcans boucliers sur la Lune, tels que les Marius Hills, est assez convaincante, la présence des autres n’est pas aussi claire. Le plus grand édifice identifié, le volcan bouclier de Cauchy, possède la forme topographique adéquate et montre de nombreux petits cônes, fractures et bouches éruptives, mais les données de mesure à distance laissent supposer que l’épaisseur de la lave dans la Mare Tranquillitatis est relativement mince, ce qui pourrait signifier le Cauchy n’est pas un amoncellement de lave aussi épais qu’à Marius Hills. Les scientifiques continuent de penser que le Cauchy est un volcan bouclier, mais reconnaissent que cette interprétation est provisoire et ils continueront à étudier ces structures énigmatiques pour mieux comprendre leur histoire.
Source: Air and Space.

————————————–

The advent of new, high-precision data (high resolution topography) has led scientists to re-examine areas and processes long thought understood and sometimes come to different interpretations. This is the case with lunar science.  The 42nd Lunar and Planetary Science Conference held in November 2017 in Houston highlighted new scientific findings about the history and processes of the Moon.

The latest studies are about shield volcanoes on the Moon. From the giant Olympus Mons shield on Mars (600 kilometres across and 27 km high) to the large volcanoes of Venus, shield-building was thought to be a common expression of volcanism on all rocky Solar System bodies; the Moon appeared to be a conspicuous exception. Earth’s shield volcanoes range in size from a few to more than 200 km for the Big Island of Hawaii, the extent of its base on the sea floor beneath the surface of the Pacific Ocean.
The large-scale shield volcanoes so prominent on Mars, Venus and Earth were believed to be absent on the Moon.  Before the Apollo 11 astronauts visited Mare Tranquillitatis in 1969, scientists understood that the dark seas – or maria – of the Moon were volcanic lava plains, surface features created by volcanic activity.  Many of these small volcanic features tend to be clustered in provinces concentrated on the western near side.
Rocks from the maria are basalts, the most common type of igneous rock in the Solar System.  On Earth, when such rocks are molten, the resulting magma has a very low viscosity. On the Moon, the maria formed as massive high-volume eruptions built up stacks from the thin, fluid flows which extended for hundreds of kilometres.  Scattered within the ancient maria are numerous small volcanic structures, previously believed to be the only manifestation of central-vent volcanism on the Moon.
When the Moon’s topography was mapped for the first time with laser altimetry in 1994, it showed clusters of many small volcanoes occurring on topographic highs that are quasi-circular, with low relief and shield-shaped. Scientists found that these large shield-shaped topographic swells are made of basaltic lava and display concentrations of volcanic features.  Such a structure found on Venus or Mars would be classified as a shield volcano; therefore, these features on the Moon are interpreted as shield volcanoes.  Seven of these large structures have been discovered on the Moon, ranging in size from 66 to almost 400 kilometres in diameter and from 600 to over 3200 metres in height.  Such sizes and shapes are very similar to large shields on Earth, Venus and Mars.  The average slopes on these volcanoes are very low, typically less than a few degrees, as would be expected for structures made from very fluid lava.  These lunar shields display abundant volcanic features, including domes and cones, and collapse features which are all common morphologies in terrestrial shield volcanoes.
Although scientists believe these features are shield volcanoes, this new interpretation is not without some difficulties.  Unlike most shield volcanoes on the other planets, none of the lunar shields has a caldera. However, many shields, especially those on Venus, likewise do not show central calderas.  Additionally, while evidence for some lunar shields such as the Marius Hills is pretty convincing, the evidence for others is not as clear.  The largest feature that was identified, the Cauchy shield, possesses the correct topographic shape and has numerous small cones, rilles, and vents on it, but remote sensing data suggest that the lava thickness in eastern Mare Tranquillitatis is relatively thin, which might mean that Cauchy is not a thick stack of lava as Marius appears to be.  Scientists still think that Cauchy is a shield volcano, but acknowledge that this interpretation is tentative and they will continue studying these enigmatic features to better understand their history.

Source: Air and Space.

Mauna Loa (Hawaii): un superbe exemple de volcan bouclier (Photo: C. Grandpey)

Vue du sommet du Mauna Loa (Crédit photo: USGS)

Volcans et atmosphère lunaire // Volcanoes and lunar atmosphere

Une étude récente publiée dans la revue Earth and Planetary Science Letters révèle qu’il y a 3,5 milliards d’années une atmosphère enveloppait la Lune. Aujourd’hui, il ne reste pratiquement plus rien de cette atmosphère ténue, mais de nouveaux calculs montrent que de puissantes éruptions volcaniques ont généré assez de gaz à haute température pour créer cette atmosphère qui a mis 70 millions d’années pour s’évacuer.
Les astronomes ont longtemps pensé que la Lune était totalement dépourvue d’atmosphère, mais les chercheurs ont récemment découvert que l’océan de magma qui recouvrait la Lune à sa naissance il y a 4,5 milliards d’années a produit des vapeurs de sodium et de silice à haute température qui ont formé une atmosphère éphémère. Il semble qu’une deuxième atmosphère lunaire se soit développée il y a 3,5 milliards d’années à la suite d’éruptions pendant lesquelles la lave a envahi un grand cratère pour former Mare Imbrium, une plaine recouverte de lave sur la face de la Lune la plus proche de la Terre.
Depuis près d’une décennie, des études effectuées à l’aide de nouveaux instruments ultra sensibles ont révélé des matériaux volatils contenus dans les échantillons de verre volcanique lunaire recueillis par les astronautes des missions Apollon. Le verre provient de bassins lunaires à la couleur sombre et laisse supposer que les grandes éruptions volcaniques qui les ont formés entre 3,8 et 3,1 milliards d’années ont également émis de grandes quantités de gaz.
Les scientifiques de l’Institut Lunaire et Planétaire de Houston (Texas) ont calculé ces émissions de gaz en fonction des volumes estimés des coulées de lave. La grande coulée de 5,3 millions de kilomètres cubes de lave qui a rempli le bassin d’Imbrium s’est accompagnée de l’émission d’environ 10 milliards de tonnes de gaz. Cela a fait augmenter la pression de l’air lunaire qui a probablement atteint environ 1 pour cent de celle de la Terre, soit 1,5 fois la densité de l’atmosphère martienne.
Un chercheur de la Scripps Institution (Californie) affirme que ce processus de formation de l’atmosphère pourrait expliquer la répartition de l’eau et d’autres substances volatiles à la surface de la Lune. Cela pourrait aussi nous donner des indications sur la formation des atmosphères planétaires.
Source: The New Scientist / Earth and Planetary Science Letters.

————————————-

A recent study published in Earth and Planetary Science Letters reveals that 3.5 billion years ago an atmosphere was wrapping the Moon. Though today it retains only a few tenuous wisps of atmosphere, new calculations show that massive volcanic eruptions released enough hot gas to create one that took 70 million years to leak away.

Astronomers had long thought the Moon was perfectly dry, yet researchers recently discovered that the magma ocean covering the newborn moon 4.5 billion years ago released hot vapours of sodium and silica that formed a short-lived atmosphere. Now it seems a second lunar atmosphere developed 3.5 billion years ago as a result of eruptions flooding a large crater to form Mare Imbrium, a lava plain on the near side of the Moon.

Starting nearly a decade ago, studies using sensitive new instruments revealed volatile material embedded in lunar volcanic glass collected by Apollo astronauts. The glass came from the dark lunar basins and hinted that the large volcanic eruptions that formed them between 3.8 and 3.1 billion years ago also emitted vast amounts of gas.

Scientists at the Lunar and Planetary Institute in Houston have calculated these emissions based on the estimated volumes of the lava flows. The largest emission was the roughly 10 trillion tonnes of gas that erupted along with the 5.3 million cubic kilometres of lava that filled the Imbrium basin. That would have raised lunar air pressure to about 1 per cent that of modern Earth, or 1.5 times the density of today’s Martian atmosphere.

A researcher at the Scripps Institution of Oceanography in California says this atmosphere formation process could account for the distribution of water and other volatiles on the surface of the Moon. It could also help us understand how planetary atmospheres form.

Source : The New Scientist /  Earth and Planetary Science Letters.

La Lune pendant l’éclipse du 28 septembre 2015 (Photo: C. Grandpey)

Volcanisme lunaire // Lunar volcanism

Alors qu’il était en orbite autour de la Lune en 1971, l’équipage d’Apollo 15 a photographié une étrange structure géologique, une dépression en forme de D d’environ trois kilomètres de long et 1,5 kilomètre de large, qui continue à fasciner les scientifiques. Certains pensent que ladite structure, connue sous le nom de Ina, est la preuve d’une éruption volcanique qui aurait eu lieu au cours des 100 millions d’années écoulées, soit un milliard d’années après la dernière grande activité volcanique sur la Lune.
Toutefois, de nouvelles recherches effectuées par des géologues de l’Université Brown à Providence (Rhode Island) indiquent que Ina n’est pas si jeune. L’étude, publiée dans la revue Geology, conclut que cette structure géologique a été façonnée par une éruption il y a environ 3,5 milliards d’années ; autrement dit, elle aurait le même âge que les dépôts volcaniques sombres que l’on peut voir au premier plan sur la photo ci-dessous. En fait, c’est le type particulier de lave émis par Ina qui donne une idée fausse de son âge.
Ina se trouve près du sommet d’un monticule de roche basaltique, raison pour laquelle de nombreux scientifiques ont conclu qu’il s’agissait probablement de la caldeira d’un ancien volcan lunaire. Alors que les flancs du volcan semblent vieux de plusieurs milliards d’années, la caldeira proprement dite semble beaucoup plus jeune. Un signe de cette possible jeunesse est sa couleur beaucoup plus claire comparée celle  des environs. Cette teinte plus claire révèle que Ina n’a pas eu le temps d’accumuler beaucoup de régolite, la couche de roche friable et de poussière qui s’accumule à la surface au fil du temps.
Une autre caractéristique qui montre que Ina pourrait être jeune réside dans les quelque 80 monticules qui dominent la caldeira. Ces monticules semblent avoir beaucoup moins de cratères d’impact que la zone environnante. Au fil du temps, on s’attend à ce qu’une surface accumule des cratères de différentes tailles à un rythme relativement constant. En 2014, une équipe de chercheurs a comptabilisé les cratères sur les monticules d’Ina et conclu qu’ils avaient très probablement été formés par la lave au cours des derniers 50 à 100 millions d’années.
Les chercheurs ont examiné des volcans sur Terre qui pourraient être semblables à Ina. Ina présente l’aspect d’un pit crater sur un volcan bouclier, comme le Kilauea Iki qui est entré en éruption en 1959 à Hawaii. En se solidifiant, la lave de cette éruption a créé une couche de roche fortement poreuse à l’intérieur du cratère, avec des bulles souterraines pouvant atteindre un mètre de diamètre et un espace vide jusqu’à 60 centimètres de profondeur. Cette surface poreuse a été créée par la nature de la lave émise dans la dernière phase de l’éruption. Au fur et à mesure que l’alimentation magmatique commençait à diminuer, la lave apparaissait sous forme d’écume ou de mousse, un mélange de lave et de gaz. Lorsque cette mousse a refroidi et s’est solidifiée, elle a créé une surface très poreuse. Les chercheurs pensent que, de la même façon, une éruption sur Ina a produit de la lave sous forme de mousse. En raison de la faible gravité et de l’atmosphère quasiment absente sur la Lune, la mousse était probablement encore plus fluide que sur Terre, donnant naissance à la grande porosité observée sur Ina. C’est cette porosité élevée de la surface qui fausse les estimations de date pour Ina. Elle dissimule l’accumulation de régolite et fausse le comptage des cratères. Des expériences en laboratoire utilisant un canon à projectiles à grande vitesse ont montré que les impacts sur des cibles poreuses créent des cratères beaucoup plus petits. La porosité extrême d’Ina explique la petite taille de ses cratères et il se pourrait que beaucoup de cratères ne soient plus visibles du tout. Cette constatation modifie considérablement l’estimation de l’âge de Ina au seul vu du nombre de cratères. Les chercheurs estiment que la surface poreuse réduit d’un facteur trois la taille des cratères sur les monticules de Ina. En tenant compte de cette relation d’échelle, l’équipe de chercheurs a obtenu un âge d’environ 3,5 milliards d’années pour les monticules d’Ina. Cela correspond à l’âge de surface du bouclier volcanique qui entoure Ina et place son activité dans la fourchette de temps du volcanisme généralement observé sur la Lune.
Source: Science Daily.

———————————–

While orbiting the Moon in 1971, the crew of Apollo 15 photographed a strange geological feature, a D-shaped depression about three kilometres long and 1.5 kilometres wide, that has fascinated planetary scientists ever since. Some have suggested that the feature, known as Ina, is evidence of a volcanic eruption within the past 100 million years, a billion years or so after most volcanic activity on the Moon is thought to have ceased.

However, new research led by geologists of Brown University in Providence (Rhode Island) suggests that Ina is not so young. The analysis, published in the journal Geology, concludes that the feature was actually formed by an eruption around 3.5 billion years ago, around the same age as the dark volcanic deposits we see on the Moon’s nearside. It is the peculiar type of lava that erupted from Ina that helps hide its age.

Ina sits near the summit of a mound of basaltic rock, leading many scientists to conclude that it was likely the caldera of an ancient lunar volcano. While the flanks of the volcano look billions of years old, the Ina caldera itself looks much younger. One sign of youth is its bright appearance relative to its surroundings. The brightness suggests Ina has not had time to accumulate as much regolith, the layer of loose rock and dust that builds up on the surface over time.

Another feature that shows that Ina might be young is the 80 or so mounds which dominate the landscape within the caldera. The mounds appear to have far fewer impact craters on them compared to the surrounding area, another sign of relative youth. Over time, it is expected that a surface should accumulate craters of various sizes at fairly constant rates. In 2014, a team of researchers did a careful crater-count on Ina’s mounds and concluded that they must have been formed by lava that erupted to the surface within the last 50 to 100 million years.

The researchers looked at well-studied volcanoes on Earth that might be similar to Ina. Ina appears to be a pit crater on a shield volcano similar to Kilauea in Hawaii. Kilauea has a pit crater similar to Ina – Kilauea Iki – which erupted in 1959. As lava from that eruption solidified, it created a highly porous rock layer inside the pit, with underground vesicles as large as one metre in diameter and surface void space as deep as 60 centimetres. That porous surface is created by the nature of the lava erupted in the late stages of events like this one. As the subsurface lava supply starts to diminish, it erupts as « magmatic foam » — a bubbly mixture of lava and gas. When that foam cools and solidifies, it forms the highly porous surface. The researchers suggest that an Ina eruption would have also produced magmatic foam. And because of the Moon’s decreased gravity and nearly absent atmosphere, the lunar foam would have been even fluffier than on Earth, so it is expected that the structures within Ina are even more porous than on Earth. It is the high porosity of those surfaces that throws off date estimates for Ina, both by hiding the buildup of regolith and by throwing off crater counts. Laboratory experiments using a high-speed projectile cannon have shown that impacts into porous targets make much smaller craters. Because of Ina’s extreme porosity, its craters are much smaller than they would normally be, and many craters might not be visible at all. That could drastically alter the age estimate derived from crater counts. The researchers estimate that the porous surface would reduce by a factor of three the size of craters on Ina’s mounds. Taking that scaling relationship into account, the team gets a revised age for the Ina mounds of about 3.5 billion year old. That’s similar to the surface age of the volcanic shield that surrounds Ina, and places the Ina activity within the timeframe of common volcanism on the Moon.

Source: Science Daily.

Vue de Ina, la structure géologique lunaire qui intrigue les géologues

(Crédit photo : NASA)