L’Alaska héberge 54 volcans actifs, soit 80% du volcanisme actif aux États-Unis. Avant de nombreuses éruptions récentes, la hausse de la sismicité, l’augmentation du tremor volcanique et/ou des déformations rapides du sol ont été observées par les scientifiques de l’Alaska Volcano Observatory (AVO). Ces précurseurs peuvent aider à prévoir les éruptions volcaniques. Ils sont particulièrement importants en Alaska où les conditions météorologiques peuvent empêcher la détection d’autres précurseurs tels que les émissions de vapeur et de gaz, ou les anomalies thermiques par les satellites et les caméras. Cette détection est importante car elle permet d’informer les pilotes des conditions de vol. Il ne faut pas oublier que le trafic aérien est intense entre l’Amérique et l’Asie dans cette partie du monde.
Différents types de précurseurs peuvent apparaître à l’échelle de mois, de semaines, de jours ou même d’heures avant une éruption. Cependant, de telles indications d’une éruption imminente ne sont pas toujours observables sur tous les volcans d’Alaska. Il suffit de prendre l’exemple du Pavlof pour s’en rendre compte. Le Pavlof (2440 m) est un stratovolcan situé dans l’arc volcanique des Aléoutiennes. Il reste muet et est réticent à donner des indices sur une éruption imminente.
Les éruptions récentes du Pavlof en 2013, 2014 et 2016 n’ont pas montré d’activité sismique préalable, et l’éruption de 2007 n’a montré une activité sismique que quelques heures avant l’événement. Les observations satellitaires du volcan confirment que des éruptions du passé se sont produites sans provoquer de déformation préalable du sol.
L’étude de la lave émise par le Pavlof montre que le magma alimentant les éruptions est stocké à une profondeur de plus de 20 km sous sa surface. Lorsque Pavlof n’est pas en éruption, le magma reste probablement en profondeur tandis que les gaz s’accumulent dans le système de stockage de magma profond. On pense que sous la pression des gaz le magma monte rapidement vers la surface juste avant une éruption du Pavlof. Cette situation rend difficile sur le long terme l’observation des précurseurs tels que l’activité sismique superficielle et la déformation du sol.
Le magma du Pavlof est riche en gaz, ce qui entraîne généralement des éruptions explosives, avec des panaches de cendres qui atteignent les hautes altitudes. Par exemple, des panaches de cendres entre 10 et 17 km de hauteur ont été générés lors d’éruptions du Pavlof en 1986, 2014 et 2016. Ces hauteurs de panaches de cendres correspondent aux altitudes de croisière habituelles des vols commerciaux. Étant donné que l’activité volcanique du Pavlof est fréquente et peut produire des panaches de cendres d’une hauteur importante, le volcan représente un danger majeur pour les 60 000 personnes qui survolent les Aléoutiennes chaque jour. C’est pourquoi les scientifiques de l’AVO surveillent attentivement l’arc en raison des dangers posés à l’aviation par le Pavlof et d’autres volcans actifs de cette région
Actuellement, l’AVO achève un projet de mise à niveau des équipements au sol existants utilisés pour surveiller les volcans des Aléoutiennes afin d’améliorer la capacité des scientifiques de l’Observatoire à prévoir les éruptions. À la suite de récentes améliorations, les scientifiques de l’AVO ont remarqué en juillet 2021 l’apparition d’un tremor volcanique sur le réseau sismique du Pavlof, ce qui indiquait le mouvement du gaz, du magma et d’autres fluides dans le sous-sol. Un mois plus tard, le Pavlof est entré dans une période éruptive qui continue actuellement. La couleur de l’alerte aérienne a été élevée à l’ORANGE, un niveau qui indique une éruption avec émissions de cendres mineures.
Le succès de la prévision de l’éruption actuelle du Pavlof laisse supposer que les améliorations apportées à l’équipement de surveillance au sol à proximité du volcan ont peut-être permis aux scientifiques de l’AVO d’identifier une sismicité qui n’avait peut-être pas pu être détectée lors des éruptions précédentes. Cela montre que les améliorations apportées aux instruments de surveillance au sol sur le Pavlof et sur d’autres volcans des Aléoutiennes donnent aux scientifiques de l’AVO un ensemble d’outils plus efficace pour potentiellement prévoir les éruptions.
Source : HVO/USGS.
———————————————-
Alaska is home to 54 active volcanoes and accounts for 80% of active volcanism in the United States. Before many recent eruptions in Alaska, increases in the number of earthquakes, the appearance of volcanic tremor, and/or rapid ground displacements were observed. These precursors can help forecast volcanic eruptions. They are particularly important in Alaska, where weather can prevent other visible precursors, such as steam and volcanic gas emissions, and thermal anomalies, from being detected by satellites and cameras. This detection is important to inform pilots of the flying conditions. One should keep in mind that air traffic is intense in that part of the world between America and Asia.
Different types of precursory behaviour can occur on scales of months, weeks, days, or even hours before an eruption. However, such indications of impending eruption are not always observable at all Alaskan volcanoes. Pavlof (2440 m) is a stratovolcano located within the Aleutian volcanic arc. It has remained elusive in yielding clues to impending eruption.
Recent Pavlof eruptions in 2013, 2014 and 2016 haven’t shown precursory earthquake activity, and the 2007 eruption showed only hours of precursory earthquake activity. Further, satellite observations of the volcano show that past eruptions have occurred here without causing precursory ground deformation.
Studies of lavas from past eruptions at Pavlof show that the magma feeding these eruptions is stored deep (greater than 20 km) beneath its surface. When Pavlof isn’t erupting, magma likely remains at depth as gases accumulate within this deep magma storage system. The gas-entrained magma is thought to ascend rapidly to the surface just prior to eruption at Pavlof. This phenomenon complicates the Alaska Volcano Observatory (AVO)’s ability to observe longer-term eruption precursors such as shallow earthquake activity and ground deformation.
The gas-rich nature of magma at Pavlof commonly results in explosive eruptions, creating ash plumes that reach high altitudes. For example, ash plumes between 10 and 17 km high were generated during eruptions at Pavlof in 1986, 2014, and 2016. These ash plume heights fall in line with the typical cruising altitudes of commercial aviation flights. Since volcanic activity at Pavlof occurs frequently and can produce ash plumes of significant height, the volcano poses a major hazard to the 60,000 people that fly over the Aleutian arc each day. This is why AVO scientists carefully monitor the Aleutian arc due to the hazards posed to aviation by Pavlof and other active volcanoes there.
Currently, AVO is completing a project to upgrade existing ground-based equipment used to monitor these volcanoes to improve their ability to forecast volcanic eruptions. Following recent upgrades, in July 2021, AVO scientists noticed the onset of volcanic tremor on Pavlof’s network of seismic instruments indicating the movement of gas, magma, and other fluids in the subsurface. A month later, Pavlof entered a period of eruption that is ongoing and the color code was raised to ORANGE, indicating an eruption with minor ash emissions.
The success in forecasting Pavlof’s current eruption suggests that improvements in the ground-based monitoring equipment near the volcano may have allowed AVO scientists to identify tremor that possibly went undetected in previous eruptions. This shows that improvements made to ground-based monitoring instruments at this and other volcanoes give AVO scientists a stronger set of tools to potentially forecast eruptions.
Source: HVO / USGS.
Localisation du Pavlov sur l’arc des Aléoutiennes et séquence éruptive sur le volcan (Source: AVO)