Selon le volcanologue français Haroun Tazieff, aujourd’hui disparu, l’étude des gaz volcaniques est une priorité car ils sont le moteur des éruptions. Deux gaz doivent surtout être étudiés : le dioxyde de soufre (SO2) et le dioxyde de carbone (CO2), même si d’autres gaz comme le sulfure d’hydrogène (H2S) et l’hélium (He) doivent également être pris en compte.
Un article récent Volcano Watch publié par l’Observatoire des volcans hawaïens (HVO) explique comment ces gaz sont mesurés entre les éruptions du Kilauea.
Lors des éruptions, le HVO signale fréquemment les taux d’émission de dioxyde de soufre (SO2) car c’est un moyen de suivre la progression de l’activité éruptive. Toutefois, pour les périodes précédant les éruptions, ou lorsqu’il y a une intrusion magmatique en cours sans éruption, le HVO s’appuie essentiellement sur des données géophysiques telles que la déformation du sol ou la sismicité, plutôt que sur des données géochimiques telles que les émissions de SO2.
Un autre type de gaz peut être important en période non éruptive : le dioxyde de carbone (CO2) qui a un comportement très différent du SO2 dans le système magmatique du Kilauea. Ces différences peuvent être exploitées pour mieux comprendre les processus qui se produisent sous la surface du sol. Par exemple, sur le Kilauea, le CO2 peut commencer à s’échapper du magma alors que ce dernier se trouve encore à plusieurs kilomètres sous la surface, alors que le SO2 est libéré de manière significative lorsque le magma se trouve à seulement quelques dizaines ou centaines de mètres sous la surface. Cela signifie souvent que l’on ne voit pas beaucoup de SO2 avant que la lave commence percer la surface.
Le problème du CO2 est qu’il est déjà présent en quantités très variables dans l’atmosphère, alors que le SO2 est normalement absent. Il est donc facile de détecter un signal de SO2 volcanique dans l’air ambiant, alors que le CO2 atmosphérique peut varier au cours d’une même journée, ainsi qu’avec les saisons.
Cependant, en coopération avec des chercheurs de l’Observatoire volcanologique des Cascades, le HVO a récemment accordé davantage d’attention aux données concernant le CO2 du Kilauea. L’Observatoire dispose d’une station multi-GAZ au sud-ouest de l’Halema’uma’u ; elle mesure quatre gaz volcaniques (CO2, SO2, H2S et vapeur d’eau), ainsi que des données météorologiques telles que la vitesse et la direction du vent.
Au lieu d’utiliser toutes les données CO2 de la station multi-GAZ, le HVO ne prend en compte que les données CO2 qui atteignent la station depuis certaines directions et certaines vitesses de vent. Cela permet d’essayer d’isoler le signal CO2 volcanique. Les scientifiques calculent des moyennes hebdomadaires de concentration de CO2. Une fois ce travail effectué, en examinant uniquement les données provenant de deux secteurs de Halema’uma’u (secteurs ouest et sud-est du cratère) avec des vitesses de vent modérées, ils obtiennent des tendances dans la concentration du CO2 en relation avec les récentes éruptions sommitales. En observant les données concernant ces deux directions du vent, les scientifiques ont pu constater que le CO2 semblait augmenter lentement et légèrement avant les éruptions sommitales du Kīlauea en juin et septembre. Après ces éruptions, les concentrations de CO2 ont chuté..
Aujourd’hui, depuis l’éruption de septembre, les concentrations de CO2 sont de nouveau en hausse, ce qui est probablement lié à l’intrusion magmatique dans les régions de stockage peu profondes situées sous la région sommitale et sous la caldeira sud.
Souvent, lorsque le Kīlauea entre en éruption, le HVO utilise le faible rapport CO2 / SO2 pour pouvoir dire que le magma alimentant l’éruption a été stocké à très faible profondeur, car ce rapport indique que le magma a déjà libéré la majeure partie de son CO2 avant l’éruption.
La prochaine étape de cette nouvelle méthode d’analyse des données gazeuses consistera à essayer de transformer les données de concentration de CO2 en taux d’émission de CO2, ce qui pourrait alors indiquer aux scientifiques non seulement que le magma est en train de monter à faible profondeur sous le Kilauea, mais aussi dans quelles proportions.
Source : USGS/HVO.
————————————————-
For late French volcanologist Haroun Tazieff, the study of volcanic gases should be given priority as they are what drives the eruptions. Two main gases need to be studied : sulfur dioxide (SO2) and carbon dioxide (CO2), although other gases such as hydrogen sulfide (H2S) and helium (He) should also be taken into account.
A recent Volcano Watch article by the Hawaiian Volcano Observatory (HVO) explains how these gases are measured between Kilauea’s eruptions.
During eruptions, HVO frequently reports sulfur dioxide (SO2) emission rates as a means of tracking the progression of eruptive activity. But for the periods before eruptions, or when there is an ongoing intrusion with no eruption, most of the data HVO relies on is geophysical data, such as deformation or seismicity, rather than geochemical data such as SO2 emissions.
There is another type of gas that can be important during non-eruptive periods :carbon dioxide (CO2) which behaves very differently from SO2 in Kilauea’s magmatic system. These differences can be exploited to help better understand processes occurring beneath the ground surface. For example, CO2 can begin to escape from Kilauea’s magma when it is still many kilometers beneath the surface whereas SO2 is largely released when magma is just a few tens or hundreds of meters beneath the surface. This often means we don’t see much SO2 being emitted until lava begins erupting at the surface.
The tricky thing about CO2 is that it is already present, and highly variable, in the atmosphere. This is different from SO2, which is not normally present. So it is easy to pick out a volcanic SO2 signal in ambient air measurements, but atmospheric CO2 can vary throughout the course of a day, as well as with the seasons.
Recently, however, in cooperation with researchers at the Cascades Volcano Observatory, HVO has been looking a little closer at CO2 data from Kilauea. The observatory has a multi-GAS station to the southwest of Halemaʻumaʻu that measures four volcanic gases (CO2, SO2, H2S and water vapor), as well as meteorological data such as wind speed and wind direction.
Instead of using all the CO2 data from the multi-GAS, HVO separates out CO2 data that reaches the station from certain directions at certain wind speeds. This allows to try to isolate the volcanic CO2 signal. The scientists calculate weekly averages of the CO2 concentration. Once they have done that, if they look only at data coming from two portions of Halemaʻumaʻu (the western and the southeastern parts of the crater) at moderate wind speeds, they see patterns in the CO2 concentration relative to the recent summit eruptions. For both wind directions, the scientists can see that CO2 coming from those directions appeared to increase slowly and slightly before the June and September Kīlauea summit eruptions. Once the eruptions occurred, CO2 concentrations dropped back down.
Today, since the September eruption, CO2 concentrations have been increasing again, and the increase is likely related to the intrusion of magma into the shallow storage regions beneath the summit and south caldera regions.
Often when Kīlauea erupts, HVO uses the low ratio of eruptive CO2 to SO2 to be able to say that the magma feeding the eruption was stored very shallow because that low ratio tells that the magma already degassed most of its CO2 before eruption.
The next step with this new data analysis method is to try to turn the CO2 concentration data into emission rates of CO2, which could then perhaps tell scientists not just that magma is rising to shallow depths beneath Kilauea, but how much magma is rising.
Source : USGS / HVO.
°°°°°°°°°°

Ces graphiques montrent les concentrations de dioxyde de carbone (CO2) dans deux zones sommitales du Kīlauea, de mars à octobre. Les carrés rouges et les cercles bleus représentent les moyennes hebdomadaires de concentration de CO2 mesurées à la station multi-GAZ du Kīlauea lorsque le vent vient de directions et à des vitesses spécifiques. Les symboles gris représentent les mesures individuelles (moyennes sur 30 minutes jusqu’à huit fois par jour). Les barres verticales roses représentent les éruptions du Kilauea de juin et septembre. (Source : USGS)
————————-
These plots show carbon dioxide (CO2) concentrations in two summit areas of Kīlauea, from March to October. The red squares and blue circles represent weekly averages of CO2 concentration measured at the Kīlauea Multi-GAS Station when the wind is coming from specific directions and at specific wind speeds. Gray symbols represent individual measurements (30-minute averages up to eight times per day). The pink vertical bars represent Kilauea’s June and September eruptions. (Source: USGS)