Nouvelle technique de prévision volcanique // New technique of volcanic prediction

Un groupe de chercheurs de l’Institut des Sciences de la Terre (ISTerre) en France affirme être premier à pouvoir prévoir avec succès le comportement d’un volcan en utilisant l’assimilation de données, la même technique utilisée dans les prévisions météorologiques. L’assimilation de données est l’ensemble de techniques qui permettent de combiner un modèle et des observations ou données. D’un côté, le modèle est généralement représenté sous forme d’équations mathématiques ; c’est la phase de modélisation, d’un phénomène physique, biologique, chimique, ou autre, qui consiste à représenter ce phénomène à l’aide d’équations mathématiques. De l’autre, on a les données représentant une source d’information expérimentale ou observationnelle. Le but de la combinaison du modèle et des données est généralement de reconstituer l’état de l’écoulement d’un fluide géophysique, par exemple un océan, ou l’atmosphère.

Les résultats de l’étude de l’ISTerre ont été publiés dans la revue Frontiers in Earth Science.
L’objectif des scientifiques est de prévoir les éruptions des volcans actifs proches des zones habitées afin que les gens puissent évacuer rapidement et en toute sécurité. Selon un chercheur: « Viendra le jour où les prévisions volcaniques quotidiennes ou même horaires seront possibles, tout comme n’importe quel autre bulletin météo ».
Pour ce faire, l’équipe scientifique utilise des systèmes GPS et radar par satellite qui mesurent les mouvement du sol au cours de la phase d’inflation d’un volcan. En combinant ces données avec des équations mathématiques à l’aide de l’assimilation de données, les chercheurs savent qu’ils peuvent formuler des prévisions précises en temps réel.
Les outils analysent la surpression du magma, paramètre essentiel dans la prévision des éruptions volcaniques. De nombreux volcans sont situés au-dessus des chambres magmatiques. La roche fondue à l’intérieur de la chambre subit une forte pression, qui peut fracturer la roche de l’encaissant au fil du temps. Si le magma trouve son chemin vers la surface, cela aboutit à une éruption volcanique.
Au cours des tests de simulation, les chercheurs ont correctement prédit l’excès de pression conduisant à une éruption volcanique, ainsi que la forme de la chambre magmatique profonde. Selon les chercheurs, ces chambres se situent généralement à des kilomètres sous la surface de la Terre et il est pratiquement impossible de les étudier avec les méthodes existantes.
L’équipe scientifique a également commencé à tester sa méthode sur des volcans actifs, comme le Grímsvötn en Islande et l’Okmok en Alaska.
Les technologies satellitaires et les systèmes GPS ont déjà été utilisés mais les recherches ont porté sur la surveillance des volcans plutôt que sur la prévision des comportements futurs.
Source: CNN Tech.

NDLR : Avec tout le respect que j’ai pour la recherche scientifique, j’ai toujours émis des doutes sur l’utilisation de sciences exactes comme la modélisation, la simulation ou l’assimilation de données en volcanologie. Certes, elles aident à comprendre certains phénomènes. La modélisation de coulées pyroclastiques, par exemple, permet de comprendre leur déroulement. Pour le reste, on sait combien le comportement d’un volcan peut être imprévisible (Le Piton de la Fournaise en a été un bel exemple ces derniers mois !) et donc peu compatible avec des sciences exactes. Ainsi, les études du gonflement et du dégonflement du volcan de Yellowstone n’ont abouti à rien de vraiment satisfaisant au niveau de la prévision éruptive. S’agissant de la mise en oeuvre de l’étude, je ne comprends pas trop pourquoi les scientifiques ont choisi le Grimsvötn et l’Okmok qui ne font pas partie des volcans les plus actifs de la planète ; de plus, ils ne sont pas vraiment situés à proximité des zones habitées mentionnées dans l’article.

————————————–

A group of researchers from the Institut des Sciences de la Terre (ISTerre) in France claims it is the first to successfully predict the behaviour of a volcano using data assimilation, the same technique used in weather forecasting. In data assimilation, one prepares the grid data as the best possible estimate of the true initial state of a considered system by merging various measurements irregularly distributed in space and time, with a prior knowledge of the state given by a numerical model. Because it may improve forecasting or modeling and increase physical understanding of considered systems, data assimilation now plays a very important role in studies of atmospheric and oceanic problems.

The results of the study have been published in the journal Frontiers in Earth Science.

The aim is to make eruptions of active volcanoes close to cities more predictable, so people can evacuate quickly and safely. Said a researcher: « We foresee a future when daily or even hourly volcanic forecasts will be possible, just like any other weather bulletin. »

The team’s method uses GPS and radar satellite systems that measure the movement of the ground as a volcano inflates. By integrating this data with mathematical equations using data assimilation, researchers say they can give accurate real-time predictions.

The tools analyze magma overpressure, a key way to predict volcanic eruptions. Many volcanoes are located on top of magma chambers. The chamber’s molten rock undergoes great pressure, which can fracture the rock around it over time. If the magma finds its way to the surface, it results in a volcanic eruption.

During simulation tests, the researchers correctly predicted the excess pressure that drove a volcanic eruption and the shape of the deepest underground magma chamber. According to the researchers, these chambers are usually miles below the Earth’s surface and almost impossible to study with existing methods.

The team also started testing its method on real volcanoes, such as the Grímsvötn Volcano in Iceland and the Okmok Volcano in Alaska.

Geoscientists have previously used satellite and GPS technologies, but their research focused on monitoring volcanoes rather than predicting future behaviour.

Source: CNN Tech.

Editor’s note: With all due respect to scientific research, I have always expressed doubts about the use of exact sciences such as modeling, simulation or data assimilation in volcanology. Certainly, they help to understand certain phenomena. The modeling of pyroclastic flows, for example, makes it possible to understand their progress. For the rest, we know how the behaviour of a volcano can be unpredictable (Piton de la Fournaise has been a good example in recent months!). Regarding the implementation of the study, I do not understand why scientists have chosen Grimsvötn and Okmok which are not among the most active volcanoes on the planet; moreover, they are not really located near the inhabited areas mentioned in the article.

Lac dans le cratère du Cône E, à l’intérieur de la caldeira de l’Okmok (Crédit photo: AVO).