Activité sismique à grande profondeur en Californie // Deep seismicity in California

drapeau-francaisUne nouvelle étude publiée début octobre dans la revue Science nous apprend que des sismologues qui travaillaient sur le terrain en Californie du Sud ont détecté une activité sismique à une profondeur surprenante.

L’activité sismique profonde ou faible est souvent très difficile à contrôler, en particulier dans les zones urbaines, en raison de la distance entre les capteurs et du bruit causé par la circulation et les activités industrielles. Afin de mieux étudier ces micro signaux, un groupe de chercheurs a installé des détecteurs le long de la faille Newport-Inglewood (NIF), qui s’étire sur près de 80 kilomètres entre Culver City et Newport Beach, en Californie du Sud *.
On sait que la plupart des dégâts sont infligés par les séismes les plus puissants, mais les petits séismes comme ceux observés le long de la NIF se produisent beaucoup plus fréquemment, et leur localisation peut être utilisée pour mettre en évidence des failles actives et leur profondeur.
En filtrant le bruit, les chercheurs ont constaté que l’activité le long de la NIF était extrêmement profonde et fréquente comparée à des failles semblables dans la région. Ils se sont donc concentrés sur ce qui semble être le prolongement profond de la faille Newport-Inglewood dans le manteau supérieur. Les chercheurs pensent que ces signaux pourraient conduire à une meilleure compréhension de la profondeur à laquelle les séismes se produisent, et pourraient permettre de mieux comprendre la structure de la faille.
La profondeur surprenante de ces séismes soulève des questions sur la surveillance sismique. Les scientifiques ne savent pas si ces petites secousses se produisent à grande échelle et si on ne les a pas détectées sur d’autres failles en raison de la difficulté à contrôler les petits séismes profonds, ou si la NIF est unique avec une sismicité profonde qui s’étend jusqu’au manteau supérieur.
La faille Newport-Inglewood est également remarquable pour la fréquence de ses séismes. Ces derniers suivent d’habitude une loi d’échelle qui prédit le rapport entre le nombre de petits et grands séismes qui se produisent sur un segment spécifique d’une faille. Ce rapport est généralement constant. Cependant, les sismologues présents sur la FNI ont constaté que dans les parties les plus profondes de la faille le nombre de petits séismes est beaucoup plus important que le nombre de grands séismes. Ils pensent que ce rapport différent le long de la NIF est peut-être dû à des changements de température, de pression ou à la minéralogie des roches à ces profondeurs. Des recherches supplémentaires seront nécessaires pour en déterminer la véritable cause.
La fréquence et la profondeur différentes des séismes sur la NIF pourraient également signifier que la profondeur maximale de l’activité sismique est peut être beaucoup plus grande qu’on le pensait jusqu’à présent. Par exemple, le séisme de 2012 à Sumatra (Indonésie) a eu lieu sous l’Océan Indien à une bien plus grande profondeur que celle à laquelle les sismologues s’attendaient sur la base des mesures précédentes de sismicité. Depuis cet événement, les chercheurs se demandent si la même chose pourrait se produire sur des failles continentales, comme en Californie.
Jusqu’à présent, les recherches ne montrent pas que ces régions de failles profondes produisent des séismes plus puissants. Le dernier événement majeur le long de la faille Newport-Inglewood  a été le séisme de Long Beach, d’une magnitude de M 6.4, qui s’est produit au sud de Los Angeles le 10 mars 1933.
Source: Live Science

* En 2015, des scientifiques ont découvert une fuite d’hélium naturel en Californie du Sud. Ce phénomène a prouvé que la faille Newport-Inglewood était plus profonde qu’on le pensait, avec une connexion directe entre la surface de la Terre et le manteau. Les chercheurs ont trouvé des niveaux élevés de l’hélium-3 dans des puits de pétrole jusqu’à 3 kilomètres de profondeur dans le comté d’Orange, le long d’un tronçon de 48 kilomètres entre le Westside de Los Angeles et Newport Beach.

 ——————————————-

drapeau-anglaisA new study published early in October in the journal Science informs us that seismologists working on the field in Southern California found seismic activity at deeper-than-expected levels.

Deeper or smaller seismic activity can be very difficult to monitor, especially in urban areas, due to the distance between seismicity monitors and the noise caused by traffic and industrial activities. In order to better see these so-called micro signals, a group of researchers deployed detectors along the Newport-Inglewood Fault (NIF), which stretches over nearly 80 kilometers, from Culver City to Newport Beach, in Southern California*.

Most of the damage is inflicted by large earthquakes, but these small earthquakes like the ones we observe at NIF occur much more frequently, and their location can be used to highlight active faults and their depth.

By filtering out the noise, the researchers found that activity along the NIF was unusually deep and frequent compared to similar faults in the region. They are concentrated in what appears to be the deep continuation of the Newport-Inglewood fault down into the upper mantle. The researchers said these signals could lead to a better understanding of the depths at which earthquakes can occur, and could further illuminate the structure of the fault.

The unexpected depths of these earthquakes raise questions about quake monitoring. Scientists don’t know whether these temblors are widespread and have simply been missed at other faults because of the difficulty in monitoring small, deep quakes, or, if the NIF is unique and somehow the fault has deep seismicity that extends to the upper mantle.

The Newport-Inglewood Fault is also remarkable in another way: the frequency of its quakes. Earthquakes statistically follow a scaling law that predicts the ratio between the number of small and large earthquakes that will occur on a specific fault segment. That ratio is generally constant. However, on the NIF seismologists found that for the deeper sections of the fault, the number of the small earthquakes is much larger than the number of large earthquakes. They suggested that the different ratio along the NIF could be due to changes in temperature, pressure or the mineralogy of the rocks at those depths, but said that further research is needed to determine the root cause.

The NIF’s unique frequency and depth of earthquakes could also mean that the maximum depth of seismic activity may be much deeper than was previously thought. For example, the 2012 Sumatra earthquake in Indonesia occurred deep beneath the Indian Ocean, penetrating much deeper than expected based on previous measures of seismicity. Since then, researchers have been wondering if something similar could happen on continental faults like in California

Fortunately, this research thus far does not show that these deep fault regions will produce larger earthquakes. The last major earthquake along the NIF was the M 6.4 Long Beach earthquake that struck south of Los Angeles on March 10th, 1933.

Source : Live Science.

*In 2015, scientists discovered a natural helium leak in Southern California. It revealed that the Newport-Inglewood fault was deeper than once thought, with a direct connection from the Earth’s surface to the mantle. They found high levels of helium-3 in oil wells up to 3 kilometers deep in Orange County, along a 48-kilometer stretch from Los Angeles’ Westside to Newport Beach.

nif

Faille Newport-Inglewood (Mine-engineer.com)

Suite à la diffusion de cette article, des précisions ont été apportées par l’ancien Directeur de l’Observatoire des Sciences de l’

Univers de Grenoble.  Je vous invite à les lire attentivement:

« Je voudrais apporter quelques précisions sur les magnitudes et les intensités. La magnitude est liée à l’énergie libérée sous forme d’ondes sismiques enregistrées par les capteurs. . L’énergie libérée totale comprend aussi l’énergie de déformation des roches et la chaleur libérée. Le rapport entre l’énergie sismique et l’énergie totale est appelé rendement sismique. On l’estime souvent (mais arbitrairement) à la valeur 0.1 .
La région épicentrale n’est pas obligatoirement la zone de plus forte intensité. Cette définition est purement théorique en supposant le séisme réduit à un point. On ne l’utilise que pour la détermination spatiale des séismes historiques. Dans la réalité, un séisme est une rupture qui se propage à quelques km/s le long d’une faille horizontalement et en profondeur d’où la notion de surface de la faille (déterminée à partir des répliques) qui intervient dans le calcul du moment sismique. On appelle foyer du séisme le lieu du départ de la rupture. L’épicentre est placé à la verticale du foyer. Si on regarde les isoséistes du séisme de Provence de 1909, les intensités maximales VIII et IX ont une enveloppe de forme elliptique allongée quasiment E-W de 25 x 10 km. L’épicentre se trouverait au centre de cette surface (entre Rognes et Lambesc). D’autre part, il existe des effets de site qui augmente le déplacement du sol donc l’intensité associée, et des effets de propagation des ondes sismiques comme par exemple en 1985 au Mexique, où les dégâts les plus importants ont été observés à Mexico située à 400 km de l’épicentre du séisme ».

Publicités

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s