L’albédo // Albedo

Quand j’aborde le réchauffement climatique dans l’Arctique, je fais souvent référence à l’albédo qui joue un rôle très important dans la hausse des températures. Plusieurs visiteurs de mon blog m’ont demandé des explications sur ce phénomène.

Pour faire simple, on peut dire que l’albédo – ou albedo – est la fraction de l’énergie solaire qui est renvoyée vers l’atmosphère. Le mot est emprunté au latin albedo signifiant « blancheur. »

L’albédo permet de calculer, grâce à un facteur entre 0 et 100, le rayonnement solaire réfléchi par une surface, 0 correspondant à une surface absorbant tous les rayons, et 100 à une surface renvoyant tous les rayons. Plus le rayonnement absorbé par la surface est important et moins il est réfléchi, plus la surface chauffe. Les objets noirs ont une valeur albédo faible; ils absorbent donc une grosse partie des rayons du soleil et se réchauffent fortement. Les objets blancs ont un albédo élevé et réfléchissent les rayons du soleil beaucoup plus fortement, de sorte qu’ils se réchauffent moins rapidement.

La banquise a un albédo proche de 100; elle peut renvoyer jusqu’à 70 % de l’énergie solaire pour la glace nue, voire 90 % quand elle est couverte de neige fraîche, quand l’océan n’en renvoie que 10 %. Cela signifie que la fonte de la glace de mer a un effet négatif, puisque l’eau absorbe alors plus l’énergie solaire que la glace, et que sa surface se réchauffe plus vite, accroissant encore la fonte de la glace dans une boucle de rétroaction positive. L’atténuation de l’albédo accélère ainsi encore le réchauffement dans les régions polaires.

On a beaucoup accusé les particules de carbone noir d’être responsables de la chute de l’albédo dans l’Arctique, mais les dernières études montrent que leur impact n’est pas aussi significatif qu’on le pensait. Les mesures satellitaires montrent une baisse de l’albédo dans le secteur arctique estimée à -1,2 à -1,5 % par décennie entre mars et septembre sur la période entre 1982 et 2014. Néanmoins, dans cette tendance, la part des dépôts de carbone noir est mal connue. La conclusion d’une étude effectuée en 2017 (voir ma note du 16 juillet 2017) était que le risque d’intensification des feux de forêts, et donc de la fonte du Groenland, doit être pris au sérieux, même si la relation entre les deux phénomènes est à peine prouvée à ce stade. Pour les auteurs de cette étude, le réchauffement de la température atmosphérique et de l’océan restait la principale cause de la fonte du Groenland, plus que les particules de carbone noir en provenance des feux de forêts.

Les auteurs d’une nouvelle étude parue dans les Proceedings de l’Académie Nationale des Sciences le 11 novembre 2019 ont pu déterminer quels étaient les principaux acteurs responsables de la diminution de l’albédo. Grâce à de multiples jeux de données et à un modèle couplant climat et chimie, ils ont pu exclure l’effet associé aux dépôts de noir de carbone. Cet effet a été jugé « marginal ». Au final, les données montrent que c’est la réduction de la couverture neigeuse – sur les continents et sur la glace – qui a joué le rôle le plus important. Ce recul fait suite à la hausse de la température et à la raréfaction des précipitations neigeuses. Il expliquerait 70 % de la baisse de l’albédo. Les 30 % restant seraient le résultat du recul de la banquise arctique et de la diminution de son épaisseur.

Les glaciers de l’Arctique, et du Groenland en particulier, ne sont toutefois pas les seuls à recevoir la suie des feux de forêt. Les glaciers de l’Himalaya et du Plateau Tibétain fondent eux aussi plus rapidement à cause des nuages ​​de suie provenant des gaz d’échappement des véhicules diesel et des feux d’écobuage, essentiellement en Inde. On trouve des concentrations de carbone noir dans l’Himalaya, un univers censé être vierge et d’une grande pureté.
L’Inde et la Chine produisent environ un tiers du carbone noir dans le monde, et les deux pays tardent à prendre des mesures. La réduction des émissions de carbone noir serait relativement peu coûteuse et aiderait à réduire sensiblement le réchauffement climatique.
En fait, les gouvernements indien et chinois sont réticents à proposer des plans visant à réduire les émissions de carbone noir parce qu’ils veulent que l’attention reste concentrée sur les pays riches qui, selon eux, doivent tout d’abord réduire leurs émissions de dioxyde de carbone.

C’est anecdotiques, mais voivi un exemple de la faculté du blanc à renvoyer la lumière et celle du noir à l’absorber. Dans les années 1960, une équipe de coureurs cyclistes professionnels était sponsorisée par la marque Peugeot. Les maillots avaient des damiers noirs et blancs et la marque était écrite en grosses lettres noires. Je me souveins qu’un soir d’étape du Tour de France, un des coureurs de l’équipe s’est mis torse nu et le nom de la marque était inscrit sur la peau de son dos!

—————————————–

When I talk about global warming in the Arctic, I often refer to the albedo, which plays a very important role in rising temperatures. Several visitors to my blog have asked me for an explanation of this phenomenon.

Simply put, we can say that the albedo is the fraction of solar energy that is sent back to the atmosphere. The word is borrowed from the Latin albedo meaning « whiteness. »

The albedo makes it possible to calculate, thanks to a factor between 0 and 100, the solar radiation reflected by a surface, 0 corresponding to a surface absorbing all the rays, and 100 to a surface sending back all the rays. The more radiation absorbed by the surface and the less it is reflected, the more the surface heats up. Black objects have a low albedo value and therefore absorb a large part of the sun’s rays and heat up strongly. White objects have a high albedo and reflect the sun’s rays much more strongly, so they heat up less quickly.

The ice sheet has an albedo close to 100; it can reflect up to 70% of solar energy for bare ice, even 90% when it is covered with fresh snow, whereas the ocean only reflects 10%. This means that the melting of the sea ice has a negative effect, since the water then absorbs more solar energy than the ice, and its surface heats up faster, further increasing the melting of the sea ice in a positive feedback loop. The attenuation of the albedo thus further accelerates warming in the polar regions.

Black carbon particles have been widely blamed for the drop in albedo in the Arctic, but the latest studies show that their impact is not as significant as previously thought. Satellite measurements show a drop in albedo in the Arctic sector estimated at -1.2 to -1.5% per decade between March and September over the period between 1982 and 2014. Nevertheless, in this trend, the share of black carbon deposits is poorly understood. The conclusion of a study carried out in 2017 (see my post of July 16th, 2017) was that the risk of intensification of forest fires, and therefore of the melting of Greenland, must be taken seriously, even if the relationship between the two phenomena is barely proven at this stage. For the authors of this study, the warming of the atmospheric and ocean temperature remained the main cause of the melting of Greenland, more than the black carbon particles from the forest fires.

The authors of a new study published in the Proceedings of the National Academy of Sciences on November 11th, 2019 were able to determine which were the main players responsible for the decrease in albedo. Thanks to multiple datasets and a model combining climate and chemistry, they were able to exclude the effect associated with carbon black deposits. This effect was considered « marginal ». In the end, the data shows that it was the reduction in snow cover – on the continents and on the ice – that played the most important role. This decline follows the rise in temperature and the scarcity of snowfall. It would explain 70% of the drop in albedo. The remaining 30% would be the result of the retreat of the Arctic sea ice and the reduction in its thickness.

The glaciers of the Arctic, and of Greenland in particular, however, are not the only ones to receive soot from forest fires. Glaciers in the Himalayas and Tibetan Plateau are also melting faster due to soot clouds from diesel vehicle exhausts and burning fires, mostly in India. Concentrations of black carbon are found in the Himalayas, a universe believed to be pristine and of high purity.
India and China produce around a third of the world’s black carbon, and both countries are slow to take action. Reducing black carbon emissions would be relatively inexpensive and would help significantly reduce global warming.
In fact, the Indian and Chinese governments are reluctant to come up with plans to cut black carbon emissions because they want attention to remain focused on rich countries which they say must cut emissions first. of carbon dioxide.

Valeurs de l’albédo selon les surfaces (Source: Futura-Sciences)

La surface blanche immaculée du Groenland favorise l’albédo (Photo: C. Grandpey)

Fonte de l’Arctique : une inquiétante boucle de rétroaction // Melting of the Arctic : a worrisome feedback loop

Au train où vont les choses, 2020 a toutes les chances de prendre l’une des premières places du podium du réchauffement climatique, voire la première et devancer ainsi l’année 2016 qui détient le flambeau jusqu’à présent, en grand partie grâce au phénomène El Niño qui était particulièrement fort cette année-là, alors qu’il est relativement neutre en ce moment. Comme je l’ai souligné à plusieurs reprises, les cinq dernières années ont été les cinq plus chaudes jamais enregistrées.

Ces anomalies de chaleur constatées au cours du premier semestre 2020 ont fait fondre la glace arctique beaucoup plus tôt que d’habitude. Cette fonte de la glace est due au fait que la zone arctique et toute l’Eurasie ont connu un hiver très chaud, avec de nombreux records de température. Ce qui est inhabituel et inquiétant, c’est que ces anomalies thermiques continuent.

Après avoir enregistré son hiver le plus doux depuis 140 ans, Moscou a enregistré une température record pour un 17 juin. De plus, la vague de chaleur qui touche la Sibérie a entraîné en mai une hausse de 7°C par rapport à la moyenne. On vient de voir une conséquence de cette vague de chaleur avec le dégel du pergélisol à Norilsk (nord de la Sibérie) et l’effondrement d’une cuve de diesel qui n’était plus maintenue en place par ses supports, ce qui a généré une pollution catastrophique.

Les climatologues estiment que sur cette hausse de 7°C,  2 ou 3° sont dus au réchauffement climatique anthropique, autrement dit lié aux activités humaines. 4 ou 5° sont attribuables à des variations naturelles du système climatique, la principale étant « l’oscillation nord-atlantique » – North Atlantic Oscillation (NAO). Il s’agit d’un phénomène atmosphérique et océanique, qui concerne principalement l’Atlantique Nord. On parle d’oscillation parce qu’il y a un va-et-vient, dans la direction nord-sud, d’air au-dessus des régions arctiques et islandaises vers la ceinture subtropicale près des Açores et de la péninsule ibérique. Tout le monde connaît le fameux anticyclone des Açores, avec ses fortes pressions atmosphériques. Son opposé est la dépression d’Islande avec ses tempêtes.

Cette « oscillation nord-atlantique » va contrôler en partie s’il fait plus ou moins chaud sur toute l’Europe et une partie du continent eurasiatique. Cette année, l’oscillation a été marquée dès décembre et est restée forte jusqu’en début avril, avec un anticyclone fort et une dépression très creusée, ce qui a injecté un air océanique plutôt doux à l’intérieur du continent européen jusqu’en Sibérie.

Ce phénomène météorologique s’est atténué en avril, mais les températures record subsistent ! Elles sont partiellement dues à la fonte plus précoce de la neige sur toute l’Europe de l’est et la Sibérie. Depuis mai, on assiste à une fonte rapide de la banquise près des côtes de Sibérie, ce qui entraîne une hausse de température de l’océan, mais aussi une fonte plus importante. C’est ce qu’on appelle une “boucle de rétroactions positives”, un cercle vicieux climatique qui permet de comprendre comment  – selon le GIEC – un réchauffement de 1,5°C au lieu de 2°C pourrait sauver la banquise arctique.

Le réchauffement des zones arctiques est deux fois plus rapide que le réchauffement global de la planète à cause de rétroactions positives. L’explication principale réside dans l’effet d’albédo. La neige ou la glace réfléchit le rayonnement solaire présent 24 heures sur 24 en cette saison et joue un rôle d’isolant. Si cette neige et cette glace disparaissent, le rayonnement est absorbé par la terre ou l’océan qui se réchauffe. Si l’océan est plus chaud, la glace fond plus, donc l’océan se réchauffe, donc la glace fond plus, etc. On obtient une espèce de boucle de rétroaction perpétuelle.

Pour se résumer, à cause de cet hiver très doux, les réserves de glace et de neige sont restées plus faibles que d’habitude le long des côtes sibériennes et sur tout le continent eurasiatique. On a donc une fonte des glaces précoce quand le soleil revient au printemps et au début de l’été. Cette fonte est inquiétante pour tout l’Arctique, avec le risque d’un triste record.

Il faut attendre de voir l’évolution des conditions météorologiques cet été pour savoir à quel point l’Océan Arctique sera privé de glace à la fin de la saison estivale en septembre.

Ces boucles de rétroactions montrent parfaitement pourquoi une petite hausse de la température peut avoir beaucoup d’impacts sur des vastes zones de la planète.

Note inspirée d’un article paru sur le site web du Huffington Post.

———————————————-

As things are going, 2020 will probably take one of the first places on the global warming podium, if not the first place, and thus taking the lead before the year 2016 which holds the torch so far, largely thanks to the El Niño phenomenon which was particularly strong that year, while it is relatively neutral at the moment. As I have repeatedly pointed out, the past five years have been the hottest five years on record.
These thermal anomalies recorded in the first half of 2020 caused the Arctic ice to melt much earlier than usual. This melting of the ice is due to the fact that the Arctic zone and all of Eurasia experienced a very hot winter, with many temperature records. What is unusual and worrisome is that these thermal anomalies continue.
After recording its mildest winter in 140 years, Moscow recorded a record temperature for June 17th. In addition, the heat wave that hit Siberia led to an increase of 7°C in May compared to the average. We have just seen a consequence of this heat wave with the thawing of the permafrost in Norilsk (northern Siberia) and the collapse of a diesel tank which was no longer held in place by its supports, which generated catastrophic pollution.
Climatologists estimate that of this increase of 7°C, 2 or 3° are due to anthropogenic global warming, in other words linked to human activities. 4 or 5° are due to natural variations in the climate system, the main one being the North Atlantic Oscillation (NAO). It is an atmospheric and oceanic phenomenon, which mainly concerns the North Atlantic. It is an oscillation because there is a back and forth movement, in the north-south direction, of air over the Arctic and Icelandic regions towards the subtropical belt near the Azores and the Iberian peninsula. Everyone knows the famous Azores high, with its strong atmospheric pressures. Its opposite is the Icelandic depression with its storms.
This « North Atlantic oscillation » partly controls whether it is more or less hot throughout Europe and part of the Eurasian continent. This year, the oscillation was strong from December and remained so until the beginning of April, with a strong high pressure and a very deep depression, which injected a rather soft oceanic air inside the European continent, as far as Siberia.
This phenomenon eased in April, but record temperatures still remain! They are partially due to the earlier melting of snow all over Eastern Europe and Siberia. Since May, there has been a rapid melting of the ice sheet near the coasts of Siberia, which leads to an increase in ocean temperature, but also a greater melting. This is known as a « positive feedback loop », a vicious climate circle that helps understand how – according to the IPCC – warming by 1.5°C instead of 2°C could save the Arctic sea ice.
Global warming in the Arctic is twice as fast as global warming due to positive feedbacks. The main explanation lies in the albedo effect. Snow or ice reflects the solar radiation present 24 hours a day during this season and acts as an insulator. If this snow or ice disappears, the radiation is absorbed by the earth or the warming ocean. If the ocean is warmer, the ice melts more, so the ocean warms up, so the ice melts more, etc. We get a kind of perpetual feedback loop.
To sum up, because of this very mild winter, the ice and snow reserves remained lower than usual along the Siberian coast and throughout the Eurasian continent. So there is an early melting of the ice when the sun comes back in the spring and early summer. This melting is worrisome for the entire Arctic, with the risk of a sad record.
We’ll have to wait to see how the weather changes this summer to find out how ice-free the Arctic Ocean will be at the end of the summer season in September.
These feedback loops are a perfect illustration of why a minor rise in temperature can have a large impact on large areas of the planet.
Note inspired by an article on the Huffington Post website.

Anomalies thermiques par rapport à la période 1951-1980 (Source : NASA.)