L’alimentation magmatique du rift est-africain // The East African Rift’s magma feeding system

Le rift est-africain est l’un des plus vastes systèmes de rift de la planète. Il s’étend sur plus de 6 400 kilomètres, de l’Éthiopie au nord jusqu’au Malawi au sud. Il est parsemé de vallées de rift secondaires et de régions volcaniques actives, parmi lesquelles figurent certains des volcans les plus célèbres au monde, comme le Kilimandjaro et l’Ol Doinyo Lengai en Tanzanie, ou encore l’Erta Ale en Éthiopie. Cette activité volcanique fait de l’Afrique de l’Est un point chaud géothermique. Ainsi, une grande partie de l’électricité du Kenya est d’origine géothermique.
L’exploitation de cette énergie géothermique présente des avantages pour les scientifiques qui étudient le rift est-africain. Ils peuvent profiter des forages géothermiques pour mieux comprendre les mécanismes qui régissent les processus géologiques dans la région. Bien que la théorie dominante, avec une remontée de magma du manteau profond, soit à l’origine du processus de formation du rift, il est très difficile de déterminer si ce phénomène provient d’un panache unique d’origine profonde ou de plusieurs panaches disséminés le long du rift est-africain.

Dans une nouvelle étude publiée dans la revue Geophysical Research Letters, des scientifiques de l’Université de Glasgow ont utilisé des données recueillies sur le champ géothermique de Menengai au Kenya. Ils ont analysé le néon, un gaz rare, et conclu qu’il provient du manteau profond, probablement d’une zone entre le noyau externe et le manteau. Grâce à la spectrométrie de masse de haute précision, l’équipe scientifique a également détecté une « empreinte » commune des gaz sur une grande distance, ce qui étaye l’idée que le rift est-africain est alimenté par un seul « super panache » plutôt que par plusieurs processus à moindre profondeur.
La nouvelle étude émet l’hypothèse d’une masse de matériaux à très haute température en provenance de la limite noyau-manteau sous l’Afrique de l’Est. La pression de cette masse fait s’écarter les plaques tectoniques et se soulever cette partie du continent africain qui se trouve ainsi à plusieurs centaines de mètres au-dessus de son niveau normal.
Pour déterminer si le rift est-africain est effectivement alimenté par un super panache, les chercheurs ont d’abord dû analyser les isotopes du néon car les gaz rares peuvent révéler le comportement de la Terre dans les profondeurs. Cependant, ces gaz sont également facilement contaminés, à la fois par l’atmosphère et par d’autres gaz rares qui se forment dans la lithosphère. En analysant les gaz rares du champ géothermique kényan, les scientifiques ont constaté que la contamination était minime. Ils ont également découvert que les caractéristiques isotopiques du néon avaient également été observées dans d’autres parties du système de rift, notamment dans les basaltes de l’Afar en Éthiopie et dans la vallée du Rift occidental, entre l’Ouganda et la République Démocratique du Congo. Selon ses auteurs, l’étude « fournit la première preuve géochimique de l’existence d’un manteau profond commun sous l’ensemble du système de rift est-africain ».
Ces données concordent également avec une étude de 2023 de la Virginia Tech qui a cherché à comprendre pourquoi le rift est-africain présentait des déformations parallèles, et non perpendiculaires, au rift. Leur analyse a étayé l’idée qu’un super panache à la source profonde devait propulser le magma vers le nord, donnant naissance à ces étranges déformations.
Bien que le rift est-africain semble relativement statique si l’on se place au niveau de l’espérance de vie humaine, il pourrait à terme déchirer l’Afrique en deux. Autrement dit, ce à quoi nous assistons actuellement pourrait un jour donner naissance à un nouvel océan. Cependant, toutes les rifts ne se transforment pas en océans. L’évolution géologique de notre planète dira un jour ce qu’il en est du rift est-africain.
Source : Popular Mechanics via Yahoo News.

Source: Wikipedia

————————————————-

In East Africa, the East African Rift System (EARS) is one of the largest rift systems on Earth. It stretches over 6,400 kilometers from Ethiopia in the north to Malawi in the south. It is filled with rift valleys and active volcanic regions that include some of the world’s most famous volcanoes, like Mount Kilimanjaro and Ol Doinyo Lengai in Tanzania), or Erta Ale in Ethiopia. This volcanic activity means that eastern Africa is a geothermal hotspot. For example, a large majority of Kenya’s electricity is of geothermal origin.

Geothermal energy has positive side effects for scientists studying EARS. They can take advantage of the geothermal drilling to gain a better understanding of what is driving the geologic processes in the region. Although the running theory is that hot, buoyant deep-mantle upwelling drives the rifting process, it has been very difficult to figure out if this comes from one deep-sourced plume or multiple plumes along the EARS expanse.

In a new study published in the journal Geophysical Research Letters. , scientists at the University of Glasgow, using data gathered at the Menengai geothermal field in Kenya, analyzed of the noble gas neon and determined that it originates in the deep mantle, probably between the outer core and the mantle. Using high precision mass spectrometry, the scientific team also determined a common “fingerprint” of gases across a far distance, which supports the idea that EARS is powered by one singular “superplume” rather than multiple, shallower processes.

The new research suggests that a giant hot blob of rock from the core-mantle boundary is present beneath East Africa ; it is driving the plates apart and propping up the Africa continent so it is hundreds of meters higher than normal.

To investigate whether EARS is in fact powered by a superplume, the researchers first needed to analyze neon isotopes, as noble gasses can reveal deep Earth behavior. However, these gases are also easily contaminated, both by the atmosphere and by other noble gases formed in the lithosphere. However, by analyzing noble gases from the Kenyan geothermal field, scientists found that contamination was minimal. Additionally, they discovered that those same neon isotopic features had also been observed in other parts of the rift system, including in basalts from the Afar plume in Ethiopia, and in the Western Rift Valley between Uganda and the Democratic Republic of Congo. According to its authors, the study “provides the first geochemical evidence for a common deep mantle beneath the entirety of the East African Rift System.”

This data also aligns with a 2023 study from Virginia Tech that investigated why EARS displayed deformations parallel to the rift rather than perpendicular. Their analysis supported the idea that a deep-rooted superplume must be driving a northward-moving magma flow in order for these strange deformations to take shape.

While EARS appears somewhat static, at least, from a human lifespan perspective, the rift could eventually tear Africa in two. So, what we are now witnessing could one day result in the birth of an entirely new ocean. However, not all rifts turn into oceans, so we won’t know for sure until geologic history takes its course.

Source : Popular Mechanics via Yahoo News.

Persistance de la sismicité dans l’Afar (Éthiopie) // Continuing seismicity if the Afar region (Ethiopia)

Une sismicité relativement importante continue d’être enregistrée dans la région du volcan Dofen en Éthiopie depuis le 22 décembre 2024. Cette crise a été marquée par une série de séismes modérés à forts, l’ouverture d’importantes fissures dans le sol et l’apparition d’une bouche volcanique dans la région de l’Afar.
Un nouveau séisme de forte intensité et peu profond, enregistré par l’USGS avec une magnitude de M5,5, a frappé la région de l’Afar le 16 mars 2025. L’hypocentre se situait à 10 km de profondeur. L’épicentre se trouvait à 46 km au sud d’Awash et à 55 km à l’est du volcan Dofen. Le risque de victimes et de dégâts est faible. Une réplique modérée de magnitude M4,3 a également été enregistrée le 16 mars à 10 km de profondeur.
L’évacuation de 60 000 habitants a été ordonnée après le séisme de magnitude M5,7 du 4 janvier 2025, qui a provoqué l’apparition de larges fissures.
Le 3 janvier, une nouvelle bouche est apparue près du mont Dofen ; elle émettait de puissants jets de vapeur, de gaz, de roches et de boue, suscitant des inquiétudes quant à une éventuelle éruption.
L’activité sismique a par ailleurs suscité des inquiétudes quant à la stabilité structurelle du barrage de Kesem/Sabure, qui retient un volume d’eau important. Le barrage est censé résister à des séismes de magnitude M5,6. Cependant, l’activité sismique dans la région dépassant ce seuil, les scientifiques ont averti que toute défaillance structurelle pourrait entraîner des inondations catastrophiques, mettant en danger la vie de centaines de milliers d’habitants.
La région se situe dans le rift éthiopien qui fait partie du Système de rift est-africain (EARS), l’une des zones tectoniques les plus actives au monde. Cette région est sujette à de fréquents séismes, éruptions volcaniques et déformations du sol, principalement dues à l’accrétion des plaques tectoniques et à l’intrusion de magma sous la surface. Le rift africain se situe à la limite entre des plaques tectoniques divergentes, là où la plaque africaine est en train de se scinder en deux et donne naissance à la plaque somalienne et la plaque nubienne. La partie orientale de l’Afrique, autrement dit la plaque somalienne, s’éloigne du reste du continent, qui comprend la plaque nubienne. Les plaques nubienne et somalienne se séparent également de la plaque arabique au nord, créant ainsi un système de rift en « Y ». Ces plaques se croisent dans la région de l’Afar, en Éthiopie, en formant une « triple jonction ».
Source : The Watchers, USGS.

Source: USGS

———————————————

A significant seismicity has been recorded in Ethiopia’s Dofen volcano region since December 22nd, 2024. The crisis has been marked by a series of moderate to strong earthquakes, large ground fissures, and the opening of a powerful volcanic vent in the Afar region.

Another strong and shallow earthquake registered by the USGS as M5.5 hit the Afar region on March 16th, 2025. The hypocenter was located at a depth of 10 km. The epicenter was located 46 km south of Awash, and 55 km east of Dofen volcano. There is a low likelihood of casualties and damage. A moderate M4.3 aftershock was also recorded on March 16th at a depth of 10 km.

The evacuation of 60,000 residents was ordered after an M5.7 earthquake on January 4th, 2025, led to the appearance of large cracks.

On January 3rd, a new vent formed near Mount Dofen, releasing powerful jets of steam, gas, rocks, and mud, raising concerns about a potential eruption.

The seismic actuivity raised concerns about he structural stability of the Kesem/Sabure Dam which holds a substantial volume of water. The dam is supposed to withstand earthquakes up to M5.6. However, with seismic activity in the region exceeding that threshold, experts warned that any structural failure could lead to catastrophic flooding, endangering hundreds of thousands of lives.

The region lies within the Main Ethiopian Rift, part of the East African Rift System (EARS), one of the most tectonically active zones in the world. This region is prone to frequent earthquakes, volcanic eruptions, and ground deformation, mainly from ongoing tectonic plate divergence and magma intrusion beneath the surface. The rift lies on a developing divergent tectonic plate boundary where the African plate is in the process of splitting into two tectonic plates, the Somali plate and the Nubian plate. The eastern portion of Africa, the Somalian plate, is pulling away from the rest of the continent, that comprises the  Nubian plate. The Nubian and Somalian plates are also separating  from the Arabian plate in the north, thus creating a ‘Y’ shaped rifting system. These plates intersect in the Afar region of Ethiopia at what is known as a ‘triple junction’.

Source : The Watchers, USGS.

Le morcellement de Madagascar // The fragmentation of Madagascar

En mars 2018, j’indiquais sur ce blog qu’une impressionnante faille de 15 mètres de profondeur et 20 mètres de large avait tranché la route entre Mai Mahiu et Narok, dans le Sud du Kenya, à quelques kilomètres de la capitale Nairobi. Autour de cette route, les plaines fertiles et les terres arables avaient, elles aussi, vu apparaître soudainement des fissures dans le sol.

En septembre 2005, une fracture géante s’était déjà ouverte dans la croûte terrestre au nord de l’Afar. Cet événement s’est produit en même temps qu’une série de séismes et une éruption sur le flanc du volcan Dabbahu. Depuis cette époque, une dizaine d’autres fissures plus modestes se sont ouvertes au sud de la région. Selon les scientifiques, cet épisode géologique de l’automne 2005 marque sans doute l’instant zéro de l’ouverture d’un océan dans cette partie du monde.

Ce chamboulement tectonique a des répercussions jusque sur l’île de Madagascar qui, selon une étude publiée dans la revue Geology, se divisera également en îles plus petites. L’étude confirme que le continent africain se sépare lentement en plusieurs grands et petits blocs tectoniques le long du système du rift est-africain.

Cette évolution des plaques tectoniques africaines est au cœur d’un travail mené par un groupe de chercheurs du Département de Géoscience du Virginia Tech. Pour parvenir à leur conclusion, les géologues ont effectué des relevés GPS à la surface de Afrique de l’Est, à Madagascar et sur plusieurs autres îles de l’Océan Indien. Ils ont constaté que l’île de Madagascar était en train de se morceler. Le sud, porté par la plaque Lwandle, se détache du reste de l’île tandis que le centre, porté par la plaque Somalienne, se déplace dans une autre direction.

Le reste de Madagascar est également soumis à un processus complexe de morcellement et de division qui s’étend jusqu’aux Comores, et qui s’achèvera par la formation d’archipels. Ce n’est toutefois pas pour tout de suite. Comme pour l’ouverture du rift est-africain, la séparation se fait à un rythme très lent, à raison de quelques millimètres par an. Les grands bouleversements prévus n’auront donc pas lieu avant quelques millions d’années. L’écartement des terres donnera alors naissance à de nouveaux océans.

En attendant, ce travail permettra de mieux appréhender l’activité sismique et volcanique dans les Comores, avec la naissance d’un nouveau volcan sous-marin à une cinquantaine de kilomètres à l’est de Mayotte.

Pour mémoire, rappelons que la dernière campagne océanographique menée du 1er au 26 octobre 2020 a permis d’identifier au nord-ouest du volcan de nouvelles coulées de lave sur le fond marin, signe que l’activité éruptive se poursuit.

Source : Yahoo News, Science & Avenir.

———————————————–

In March 2018, I indicated on this blog that an impressive 15-metre-deep and 20-metre-wide fissure had slashed the road between Mai Mahiu and Narok, in southern Kenya, a few kilometres from the capital Nairobi. Around this road, the fertile plains and the arable land had suddenly seen cracks appear in the ground.

In September 2005, a giant fissure had already opened in the earth’s crust north of Afar. This event occurred together with a series of earthquakes and an eruption on the side of the Dabbahu volcano. Since that time, a dozen other smaller cracks have opened in the south of the region. According to scientists, this geological episode in the autumn of 2005 probably marks the zero moment of the opening of an ocean in this part of the world.

This tectonic upheaval has repercussions as far as the island of Madagascar, which, according to a study published in the journal Geology, will also be divided into smaller islands. The study confirms that the African continent is slowly separating into several large and small tectonic blocks along the East African Rift System.

This evolution of the African tectonic plates is at the heart of a work carried out by a group of researchers from the Department of Geoscience at Virginia Tech. To reach their conclusion, geologists carried out GPS surveys on the surface of East Africa, Madagascar and several other islands in the Indian Ocean. They found that the island of Madagascar was in the process of being fragmented. The south, carried by the Lwandle plate, is detached from the rest of the island while the center, carried by the Somali plate, moves in another direction.

The rest of Madagascar is also subject to a complex process of fragmentation and division which extends to the Comoros, and which will end with the formation of archipelagos. However, this is not for now. As with the opening of the East African Rift, the separation is happening at a very slow pace, at the rate of a few millimetres per year. The major upheavals will therefore not take place before a few million years. The separation of the land will then give birth to new oceans.

In the meantime, this work will make it possible to better understand seismic and volcanic activity in the Comoros, with the birth of a new submarine volcano about fifty kilometres east of Mayotte.

As a reminder, the last oceanographic campaign conducted from October 1st to 26th, 2020 identified new lava flows on the seabed to the northwest of the volcano, a sign that eruptive activity is continuing.

Source: Yahoo News, Science & Avenir.

Cadre sismotectonique des Comores (Source : CCGM et UNESCO, 2002)

 

La zone de subduction de Cascadia (Etats-Unis) // The Cascadia subduction zone (United States)

Le volcanisme et la sismicité le long de la Chaîne des Cascades dans l’ouest des États-Unis sont largement déterminés par la tectonique des plaques dans la région. La zone de subduction de Cascadia, de 1 000 kilomètres de long, qui n’a pas connu de puissant séisme depuis 1700, est l’endroit où la plaque océanique Juan de Fuca plonge sous la plaque continentale nord-américaine. Cette zone de faille s’étend depuis le nord de l’île de Vancouver jusqu’au Cap Mendocino dans le nord de la Californie.
La carte ci-dessous montre la zone de subduction de Cascadia avec une zone grisée englobant les zones sur terre et en mer où les sismomètres ont été installés par des chercheurs de l’Université de l’Oregon. Les données sismiques leur ont permis d’identifier des anomalies aux deux extrémités de la zone de faille où ils pensent que certaines parties du manteau supérieur se soulèvent et modulent l’activité sismique.
Grâce à quatre années de données provenant de 268 sismomètres au fond de l’océan et de plusieurs centaines d’autres sur terre, les chercheurs ont détecté des anomalies dans le manteau supérieur en dessous des deux extrémités de la zone de subduction de Cascadia. Ces anomalies peuvent jouer un rôle dans l’emplacement, la fréquence et la force des séismes le long de la côte nord-ouest des États-Unis. L’étude a été publiée dans la revue Geophysical Research Letters.
Les anomalies, qui correspondent aux zones ayant des vitesses d’ondes sismiques plus faibles qu’ailleurs sous la ligne de faille, indiquent des parties du manteau supérieur de la Terre qui se soulèvent en raison de la fonte des roches et éventuellement sous l’effet des hautes températures. Le manteau se soulève sous la partie méridionale de la zone de déformation de Gorda , à la limite septentrionale de la faille de San Andreas, ainsi que sous la Péninsule Olympique (ou Olympic) et le sud de l’île de Vancouver. Ces régions n’ont pas le même comportement que l’ensemble de la faille. On observe trois segments qui ont des caractéristiques géologiques distinctes. Ainsi, les segments nord et sud ont un niveau de verrouillage de plaque plus élevé et une densité de tremor plus accentuée.
Le verrouillage fait référence à la force de contact entre deux plaques. Cela signifie que les plaques accumulent des contraintes qui, en se libérant, peuvent provoquer de puissants séismes. Ce verrouillage est beaucoup plus faible dans la partie centrale de la zone de Cascadia qui comprend la majeure partie de l’Oregon où de plus petits séismes peu fréquents ont tendance à se produire.
Le tremor, quant à lui, fait référence aux signaux sismiques de longue durée souvent observés dans les zones de subduction.
L’étude ne permettra probablement pas de mieux prévoir les séismes mais elle souligne la nécessité d’une surveillance sismique en temps réel sur terre et en mer, ainsi que d’analyses géodésiques telles que le GPS pour permettre de tracer les coordonnées spatiales des anomalies.
L’étude a utilisé l’imagerie profonde avec différentes formes d’ondes sismiques provenant de séismes lointains qui se déplacent à travers la Terre. Les stations sismiques au fond de l’océan, dont les données sont récupérées tous les dix mois, faisaient partie de la Cascadia Initiative financée par la National Science Foundation. L’étude a également utilisé des données plus anciennes provenant de nombreuses recherches menées sur la terre ferme dans l’ouest des États-Unis.
Source: Université de l’Oregon.

———————————————–

Volcanism and seismicity along the Cascade Range in Western U.S.A. are largely determined by plate tectonics in the area. The 1,000-kilometres subduction zone, which has not experienced a powerful earthquake since 1700, is where the Juan de Fuca ocean plate dips under the North American continental plate. The fault zone stretches just offshore from northern Vancouver Island to Cape Mendocino in northern California.

The map below shows the Cascadia Subduction Zone with a shaded area encompassing the onshore and offshore areas where seismometers were located by University of Oregon researchers. Data from the seismometers helped them identify seismic anomalies at both ends of the fault where they believe pieces of the upper mantle are rising and modulating earthquake activity.

With four years of data from 268 seismometers on the ocean floor and several hundred on land, researchers have found anomalies in the upper mantle below both ends of the Cascadia Subduction Zone. They may influence the location, frequency and strength of earthquake events along the U.S. Pacific Northwest. The study was released by the journal Geophysical Research Letters.

The anomalies, which reflect regions with lower seismic wave velocities than elsewhere beneath the fault line, point to pieces of the Earth’s upper mantle that are rising because of melting rock and possibly elevated temperatures. The mantle is rising under the southern Gorda deformation zone at the north edge of the San Andreas Fault and under the Olympic Peninsula and southern Vancouver Island. These regions do not have the same behaviour as the entire fault. There are three segments that have their own distinct geological characteristics. The north and south segments have increased locking and increased tremor densities.

Locking refers to how strongly two plates stick. This means that the plates are building up stress that may lead to powerful earthquakes when it is released.  Locking is much weaker in Cascadia’s central section, which includes most of Oregon, where infrequent, smaller quakes tend to occur.

Tremor refers to long-duration seismic signals often seen at subduction zones.

The study will not help earthquake forecasting, but it points to the need for real time onshore-offshore seismic monitoring and geodetic analyses, such as from GPS to help plot spatial coordinates, of the anomalies.

The study involved deep imaging using different forms of seismic waves coming from distant earthquakes moving through the Earth. The ocean-bottom seismic stations, from which data were retrieved every 10 months, were part of the National Science Foundation-funded Cascadia Initiative. Older data from numerous onshore studies in the western United States also were included in the analysis.

Source : University of Oregon.

 Carte montrant la zone de subduction de Cascadia (Source: University of Oregon)