Nouveau projet géothermique dans l’Oregon // New geothermal project in Oregon

Le 12 octobre 2012, j’ai publié une note sur ce blog à propos d’un projet de développement de l’énergie géothermique dans la région du volcan Newberry (Oregon). Ce projet avait suscité de nombreuses protestations dans cette région potentiellement volcanique et sismiquement active, ce qui présentait des risques évidents.
Aujourd’hui, en 2025, nous apprenons que des ingénieurs construisent la centrale géothermique la plus chaude au monde. Elle exploitera l’énergie de ce qui est, selon l’USGS, « l’un des volcans actifs les plus dangereux des États-Unis ».

Vue du site exploité par Mazama Energy sur le Newberry

La société Mazama Energy a déjà atteint des températures de 331 °C, ce qui en fait l’un des sites géothermiques les plus chauds au monde. Elle commencera à vendre de l’électricité aux foyers et aux entreprises des environs dès 2026.
Mazama Energy souhaite maintenant atteindre une température de 389 °C et devenir la première à produire de l’électricité à partir de « roche surchauffée ». Certains affirment que l’on est à l’aube d’une nouvelle ère pour l’énergie géothermique. Aujourd’hui, la géothermie produit moins de 1 % de l’électricité dans le monde. Toutefois, l’exploitation de la chaleur extrême des roches, combinée à d’autres avancées technologiques, pourrait porter cette part à 8 % d’ici 2050 ; c’est ce que prétend l’Agence internationale de l’énergie (AIE). L’AIE explique qu’ en utilisant des températures extrêmement élevées la géothermie pourrait théoriquement produire 150 fois plus d’électricité que la consommation mondiale.

Le projet entrepris sur le volcan Newberry combine deux grandes tendances susceptibles de rendre l’énergie géothermique moins chère et plus accessible. Mazama Energy achemine sa propre eau jusqu’au volcan, grâce à une méthode baptisée « géothermie améliorée ». Au cours des dernières décennies, des projets pionniers ont commencé à produire de l’énergie à partir de roches chaudes et sèches en fracturant la pierre et en y injectant de l’eau pour produire de la vapeur, en s’inspirant des techniques de fracturation hydraulique développées par l’industrie pétrolière et gazière. Des projets pilotes ont été mis en place au Nevada et en Utah, et des chercheurs internationaux ont démontré l’efficacité de cette technologie en France, en Allemagne, en Suisse et au Japon. Injecter de l’eau dans des fractures rocheuses comporte des risques sismiques, tout comme l’injection d’eaux usées issues de la fracturation hydraulique. Une expérience de ‘géothermie améliorée’ en Suisse a été interrompue après avoir déclenché un séisme de magnitude 3,4 en 2006. Les capteurs du site de Newberry ont enregistré cinq secousses sismiques au cours des six derniers mois ; la plus importante a atteint une magnitude de 2,5 le 24 juillet 2025. Les scientifiques affirment que les séismes constitueront toujours un risque, mais qu’il peut être géré grâce à une surveillance et une ingénierie efficaces.

Le Département de l’Énergie indique que les risques de pollution de l’eau sont faibles car les centrales géothermiques recyclent l’eau dans des puits étanches, et cette eau passe par des réservoirs beaucoup plus profonds que la plupart des nappes phréatiques.
Le projet de Newberry exploite également une roche plus chaude que tous les projets précédents. Cependant, même les 331 degrés de Newberry restent inférieurs au seuil de surchauffe de 373 degrés ou plus. À cette température, et sous une pression très élevée, l’eau devient « supercritique » et se comporte comme un fluide à mi-chemin entre un liquide et un gaz. L’eau supercritique emmagasine une grande quantité de chaleur comme un liquide, tout en s’écoulant avec la fluidité d’un gaz.
Un puits géothermique à très haute température peut produire cinq à dix fois plus d’énergie qu’un puits à température classique, qui avoisine les 204 °C. De ce fait, les exploitants géothermiques n’ont plus besoin de forer autant de puits coûteux, ce qui permet de réduire les coûts.
À terme, l’énergie géothermique issue de roches à très haute température pourrait être aussi économique que le gaz naturel ou l’énergie solaire, sans la pollution des énergies fossiles ni la variabilité des énergies renouvelables.

Mazama Energy prévoit de forer de nouveaux puits l’an prochain afin d’atteindre des températures supérieures à 398 °C. À proximité d’un volcan actif, elle espère atteindre cette température à moins de 5 kilomètres de profondeur. Ailleurs, les exploitants géothermiques doivent souvent creuser jusqu’à 20 kilomètres.
Forer dans une roche à 398 °C représente un défi de taille. Les centrales géothermiques conventionnelles utilisent des équipements prévus pour l’industrie pétrolière et gazière, mais dans une roche surchauffée, les foreuses classiques deviennent inutilisables car leurs composants électroniques sont défaillants. Les ingénieurs de Mazama Energy ont refroidi leurs installations de forage en injectant un flux constant de dioxyde de carbone liquide. Cela leur a permis de forer à 3,2 km de profondeur sur le flanc du volcan et d’atteindre une roche à 331 °C en début d’année.
D’autres puits expérimentaux ont atteint des températures encore plus élevées, mais aucun n’a résisté longtemps. Des expériences de forage en Islande et à Hawaï ont été interrompues après avoir rencontré du magma de manière inattendue, ce qui a endommagé les trépans. Des puits forés au Japon et en Italie ont atteint des roches à plus de 482 °C, approchant la zone de la croûte terrestre où la roche rigide commence à se comporter comme de la pâte à modeler. Cependant, ces forages ont été abandonnés suite à des problèmes rencontrés avec le matériel de forage et les tubages en ciment.
Pour l’instant, Mazama Energy affirme que son puits est stable. Cependant, les scientifiques prévoient que les difficultés s’accumuleront à mesure que l’entreprise forera dans des roches plus chaudes et exploitera ses puits pendant des années. Les tubages en ciment et en acier seront alors exposés à des variations extrêmes de température et de pression.
Cependant, les avantages potentiels de cette nouvelle géothermie sont bien supérieurs aux défis qu’elle suppose. Mazama Energy prévoit de produire 15 mégawatts d’électricité sur le flanc ouest du volcan Newberry en 2026, avec une augmentation progressive de la production jusqu’à 200 mégawatts, soit suffisamment d’énergie pour alimenter un grand centre de données ou une petite ville.
Source : Médias américains.

Big Obsidian Flow dans le parc du Newberry (Photo: C. Grandpey)

————————————————-

On October 12, 2012 I released a post on this blog, about a geothermal energy development project in the Newberry volcano area (Oregon). Such a project had triggered numerous protests because the region is potentially volcanically and seismically active, and the project therefore presented obvious risks.

Today in 2025, we learn that engineers are building in the region the hottest geothermal power plant on Earth. The plant will tap into the energy of what is, according to the USGS, “one of the largest and most hazardous active volcanoes in the United States.”.

Newberry

Vue du site exploité par Mazama Energy sur le Newberry (Source : Mazama Energy)

The structure has already reached temperatures of 331 degrees Celsius, making it one of the hottest geothermal sites in the world, and next year it will start selling electricity to nearby homes and businesses.

But the start-up behind the project, Mazama Energy, wants to reach a temperature of 389°C and become the first to make electricity from “superhot rock.”

Enthusiasts say that could usher in a new era of geothermal power. Today, geothermal produces less than 1 percent of the world’s electricity. But tapping into superhot rock, along with other technological advances, could boost that share to 8 percent by 2050, according to the International Energy Agency (IEA) which explains that geothermal using superhot temperatures could theoretically generate 150 times more electricity than the world uses..

The Newberry Volcano project combines two big trends that could make geothermal energy cheaper and more widely available. First, Mazama Energy is bringing its own water to the volcano, using a method called “enhanced geothermal energy.” Over the past few decades, pioneering projects have started to make energy from hot dry rocks by cracking the stone and pumping in water to make steam, borrowing fracking techniques developed by the oil and gas industry. Pilot projects have been developed in Nevada and Utah, and international researchers have demonstrated the technology in France, Germany, Switzerland and Japan.

Pumping water into rock fractures risks causing earthquakes, much like injecting wastewater from fracking. A Swiss enhanced geothermal experiment was shut down after setting off an M 3.4 quake in 2006. Sensors at the Newberry site recorded five tremors in the past six months, with the biggest reaching M2.5 on July 24, 2025.

Scientists say earthquakes will always be a risk, but it can be managed with good monitoring and engineering. The Energy Department says water pollution risks are low because geothermal plants recirculate the same water in sealed wells, passing through reservoirs much deeper than most groundwater.

The Newberry project also taps into hotter rock than any previous enhanced geothermal project. But even Newberry’s 331 degrees fall short of the superhot threshold of 373 degrees or above. At that temperature, and under a lot of pressure, water becomes “supercritical” and starts acting like something between a liquid and a gas. Supercritical water holds lots of heat like a liquid, but it flows with the ease of a gas, combining the best of both worlds for generating electricity.

A superhot geothermal well can produce five to 10 times more energy than a well at typical temperatures, which hover around 204°C. That means geothermal operators don’t have to drill as many multimillion-dollar holes in the ground, bringing down costs.

Eventually, superhot rock geothermal energy could be about as cheap as natural gas or solar — without the pollution of fossil fuels or the variability of renewables.

The Mazama company will dig new wells to reach temperatures above 398°C next year. Alongside an active volcano, the company expects to hit that temperature less than 5 kilometers beneath the surface. But elsewhere, geothermal developers might have to dig as deep as 20 kilometers.

Drilling into 398°C rock presents some devilish challenges. Conventional geothermal plants can use gear developed by the oil and gas industry, which can stand up to lower temperatures. But in superhot rock, standard drills die as their electronic components fail. Mazama engineers cooled their drilling rigs by pumping in a constant stream of liquid carbon dioxide. That allowed them to burrow3.2 km into the flank of the volcano to find 331 degrees rock earlier this year.

Other experimental wells have hit even higher temperatures, but none has survived for long. Drilling experiments in Iceland and Hawaii were called off after they unexpectedly hit magma, which broke their drill bits. Wells in Japan and Italy reached rock hotter than 482°C approaching the region of Earth’s crust where rigid rock starts behaving more like putty, but were abandoned after facing problems with their drilling equipment and cement casings.

So far, Mazama says its well has remained stable. But experts say challenges will pile up as the company drills into hotter rock and operates its wells for years on end, exposing the cement and steel casings to punishing up-and-down cycles of temperature and pressure.

However, the potential rewards loom larger than the challenges. Mazama plans to generate 15 megawatts of electricity on the western flank of Newberry Volcano in 2026, eventually ramping up to 200 megawatts, enough to power a big data center or a small city.

Source : US news media.

Chaîne des Cascades : Les petits volcans de l’Oregon // Cascade Range : Oregon’s small volcanoes

S’étirant du sud de la Colombie-Britannique jusqu’au nord de la Californie, en passant par les Etats de Washington et de l’Oregon, la Chaîne des Cascades longe la côte ouest de l’Amérique du Nord. Elle comprend de nombreux volcans potentiellement actifs, dominés par les 4 392 m du Mont Rainer. Toutes les éruptions des États-Unis contigus au cours des 200 dernières années ont eu lieu sur la Chaîne des Cascades. Les deux plus récentes ont secoué le Lassen  Peak de 1914 à 1921, et le Mont St. Helens en 1980. D’autres éruptions, de moindre importance, du Mont St. Helens se sont également produites de 2004 à 2008.
Dans un article récent, le journal local de l’Oregon, The Oregonian, a rappelé à ses lecteurs que les éruptions volcaniques ont façonné le paysage du centre de l’Oregon, avec des sommets bien connus tels que le Mont Hood, le Newberry et les Three Sisters.

Cependant, une étude récente du Département des Sciences de la Terre de l’Université de l’Oregon explique que ces édifices volcaniques majeurs représentent moins de 1% de tous les volcans de la Chaîne des Cascades. L’étude a identifié 2 835 volcans dans la chaîne, dont environ 400 dans le centre de l’Oregon. La partie canadienne de la chaîne – qui comprend la région du Mont Garibaldi – n’a pas été incluse dans l’étude.
La plupart des volcans identifiés dans le centre de l’Oregon sont des collines et des buttes – comme Lava Butte – situées dans la région de Bend et des Three Sisters, et dans le Newberry National Volcanic Monument. Selon l’un des auteurs de l’étude, à quelques exceptions près, chaque petite colline autour de la ville de Bend est un volcan. Chacun des quelque 3000 volcans identifiés dans l’étude est entré en éruption au moins une fois au cours des 2,6 millions d’années écoulées. 231 sont actifs et se sont manifestés au cours des 10 000 dernières années. D’une manière générale, le volcanisme de l’Oregon est actif depuis 40 millions d’années. Un chercheur a déclaré: « Cela semble une longue période, mais d’un point de vue volcanique ou de la Chaîne des Cascades en général, ce n’est pas très long. »
L’étude ne fait pas de prévisions sur les futures éruptions, mais elle permettra aux scientifiques de comprendre quand et où la prochaine pourrait avoir lieu dans les Cascades. Les chercheurs ont utilisé des données satellitaires pour cartographier l’ensemble de la Chaîne des Cascades. Les informations ont ensuite été compilées dans une base de données, ce qui n’avait jamais été fait auparavant.
Le relief de l’Oregon a fait l’objet de plusieurs études volcaniques. En 2018, l’USGS a publié une étude qui s’attardait sur quatre volcans de l’Oregon – le Mont Hood, les Three Sisters, le Newberry et Crater Lake. Ils figurent parmi les18 volcans des Cascades susceptibles de connaître une éruption majeure.
Les auteurs de l’étude ne s’attendent pas à l’éruption d’un des grands volcans de l’Oregon ; ils pensent davantage que la prochaine éruption « jaillira du sol et créera une colline de cendres et de lave.» Ce serait la confirmation que les Cascades sont effectivement dominées par de petites éruptions.
Source: L’Oregonian.

————————————————-

Extending from southern British Columbia through Washington and Oregon to Northern California, the Cascade Range is a major mountain range of western North America. It includes many potentially active volcanoes, the highest of which is Mount Rainier (4,392 m). All of the eruptions in the contiguous United States over the last 200 years have been from Cascade volcanoes. The two most recent were Lassen Peak from 1914 to 1921 and Mount St. Helens in 1980. Minor eruptions of Mount St. Helens have also occurred since, most recently from 2004 to 2008.

In a recent article, Oregon’s local newspaper The Oregonian reminded its readers that volcanic eruptions millions of years ago shaped the Central Oregon landscape, with well-known summits such as Mount Hood, Newberry Volcano and the Three Sisters.

However, a recent study from the University of Oregon Department of Earth Sciences explains that those large mountains only represent less than 1% of all the volcanoes in the Cascade Range that have erupted in the past. The study found 2,835 volcanoes in the Cascades, including about 400 in Central Oregon. The Canadian portion of the mountain range – which includes the Mount Garibaldi area – was not included in the study.

Many of the identified volcanoes in Central Oregon are hills and buttes found in the Bend and Three Sisters area and in the Newberry National Volcanic Monument. According to one of the authors of the research, every small hill surrounding Bend is a volcano, with very few exceptions. Each of the nearly 3,000 volcanoes identified in the study have erupted at least once within the past 2.6 million years. Of those, 231 are active and have erupted within the last 10,000 years. Globally, Oregon’s entire landscape has been active for 40 million years. Said one researcher: “It is a long time, but from the standpoint of a volcano or the Cascade Range in general, it’s actually not a very long time.”

The study does not predict future eruptions, but it will help scientists understand when and where the next Cascade eruption could take place. The research team used satellite data to map the entire Cascade Range throughout the United States. The information was then compiled in a database, which had never been done before.

Oregon’s landscape has been the focus of several volcanic studies. The U.S. Geological Survey released a study in 2018 that listed four Oregon volcanoes — Mount Hood, the Three Sisters, Newberry Volcano and Crater Lake — among 18 that pose a “very high threat” of a dangerous eruption.

The authors of the study believe that rather than one of the large mountains erupting, it is more likely the next eruption will sprout from the ground and create a hill of ash and lava. It would be the confirmation that the Cascades are dominated by small eruptions.

Source: The Oregonian.

Voici les images de quelques volcans de la Chaîne des Cascades :

Source : USGS

Le Mont Baker…

Le Mont Adams…

Le Mont Hood…

Les Three Sisters…

Lava Butte…

Lassen Peak.

Photos : C. Grandpey

La Grande Coulée d’Obsidienne (Oregon / Etats Unis) // The Big Obsidian Flow (Oregon / United States)

La première fois que j’ai vu de l’obsidienne, c’était sur l’île de Lipari, dans les îles Éoliennes (Italie), où l’on peut observer l’une des plus belles coulées de ponce et d’obsidienne au monde. Elle est apparue sur les pentes du Monte Pilato entre 650 et 850 après J.C.
On peut admirer et visiter une autre belle coulée d’obsidienne aux Etats-Unis à l’intérieur du Newberry National Volcanic Monument, dans l’Etat d’Oregon. Agée de seulement 1300 ans, The Big Obsidian Flow est la plus jeune coulée de lave de l’Oregon. Elle couvre environ 2,5 kilomètres carrés près de la caldeira de Newberry qui s’est formée lorsque le cône du volcan s’est effondré il y a environ 500 000 ans. La coulée fut l’étape finale d’une plus grande éruption ; elle s’est formée quand le magma pauvre en gaz s’est frayé un chemin vers la surface et s’est refroidi, donnant naissance à l’obsidienne. Elle a l’aspect d’un verre sombre qui s’est formé quand la lave s’est refroidie sans cristalliser. Les humains ont utilisé l’obsidienne en poterie, pour façonner les pointes de flèches et même les scalpels chirurgicaux car elle est extrêmement dure et tranchante. Dans l’Oregon, il y a d’autres importants gisements d’obsidienne dans la Malheur National Forest et dans les bien nommées Glass Buttes, au sud-est du Newberry Monument.
J’ai visité la Grande Coulée d’Obsidienne il y a quelques années au cours d’un périple qui m’a conduit tout le long de la Chaîne des Cascades, depuis le Mont Garibaldi au Canada jusqu’à Lassen Peak en Californie, avec une extension vers la Faille de San Andreas. The Big Obsidian Flow est facile à repérer au cœur du Newberry National Volcanic Monument, à une soixantaine de kilomètres de Bend. La couleur sombre de l’obsidienne tranche avec le bleu des lacs et le vert des forêts qui l’entourent.

Il est facile de s’approcher de l’obsidienne. Un trajet rapide en voiture fait aboutir à un grand parking et au point de départ d’un sentier. Après avoir gravi un escalier, on suit le sentier qui serpente à travers l’obsidienne et la pierre ponce. Il passe devant plusieurs points de vue dominant la coulée, avec Paulina Peak au sud-ouest, et Paulina et East Lakes dans la caldeira au nord.
Le long du chemin, on peut admirer plusieurs gros blocs d’obsidienne qui brillent au soleil. Cependant, l’obsidienne n’est pas aussi pure que celle de Lipari. Il est malgré tout interdit de prélever des échantillons et de les rapporter à la maison en guise de souvenirs. On est prié de les laisser là où ils sont. Si on veut prélever de l’obsidienne, mieux vaut se diriger vers Glass Buttes où on peut le faire en toute légalité.
Une fois que vous aurez visité The Big Obsidian Flow, je vous conseille de monter jusqu’au sommet de Paulina Peak (attention, la route est à la fois étroite et très pentue) où vous bénéficierez d’une superbe vue à 360° sur la coulée d’obsidienne et sur toute la région.

Source: The Oregonian.

———————————–

The first time I saw obsidian was on the island of Lipari in the Aeolian Islands (Italy) where you can observe one of the most beautiful pumice and obsidian flows in the world. It travelled along the slopes of Monte Pilato between 650 and 850 A.D.

Another nice obsidian flow can be visited in the United States at Newberry National Volcanic Monument in Oregon. At just 1,300 years old, the Big Obsidian Flow is the youngest lava flow in Oregon. It covers about 2.5 square kilometres near the Newberry caldera which was formed when the volcano’s cone collapsed about 500,000 years ago. The flow was the final stage of a bigger eruption, formed as magma containing little gas made its way to the surface and cooled, creating obsidian. It is a dark, natural glass, formed when lava cools without crystallizing. Humans have used it for pottery, arrowheads and even surgical scalpels. In Oregon, there are other large deposits in the Malheur National Forest and in the Glass Buttes just southeast of the Newberry Monument.
I visited the Big Obsidian Flow during my journey all along the Cascade Range a few years ago. This trip had taken me from Mt Garibaldi in Canada down to Lassen Peak in California, with an extension to the San Andreas Fault. The Big Obsidian Flow stands out in the middle of the Newberry National Volcanic Monument, about 60 kilometres from Bend. The impressive flow of black obsidian is in stark contrast to the blue lakes and the vast green forest that surrounds it.

Getting close to the obsidian is very easy. A quick drive takes you to a large parking lot and trailhead, where a paved trail leads a short way to the flow. After climbing a flight of stairs, the trail becomes a rocky pathway through the obsidian and pumice. It winds around and eventually loops past several viewpoints looking out over the flow, toward Paulina Peak in the southwest, and at Paulina and East Lakes in the caldera to the north.
Along the way, there are several big chunks of exposed obsidian, which glisten in the light. However, the obsidian here is not as pure as the one you can find at Lipari. Even so, you are not allowed to bring samples back home. It is important to leave it be. If you want to collect obsidian, head down the road to Glass Buttes, where you can do so legally.

Once you have explored the Big Obsidian Flow, I would advise you to drive up to the top of Paulina Peak (be careful; the road is both narrow and steep) where viewpoints give you a birds-eye view of the flow.

Source : The Oregonian.

Voici quelques vues de la Grande Coulée d’Obsidienne:

Vue de Paulina Lake depuis le sommet de Paulina Peak:

Photos: C. Grandpey

 

Chaîne des Cascades (Etats Unis): Le Newberry // Cascade Range (United States): Newberry volcano

drapeau-francaisLe Newberry n’est sûrement pas le volcan le plus populaire de la Chaîne des Cascades. Il est pourtant le plus étendu avec une superficie d’environ 3100 km2. Façonné par des éruptions répétées au cours des 400.000 dernières années, le Newberry a pris la forme d’un vaste bouclier. Tout au long de son histoire éruptive, le volcan a produit des nuages de cendres et des tephra, des écoulements pyroclastiques et des coulées de lave dont la composition va du basalte à la rhyolite. Il y a environ 75 000 ans, une éruption explosive et un effondrement majeur ont donné naissance à une vaste dépression volcanique dans la zone sommitale du volcan qui héberge maintenant deux lacs de caldeira. La dernière éruption du Newberry a eu lieu il y a environ 1 300 ans et de nos jours des sources chaudes et des coulées de lave géologiquement jeunes indiquent que le Newberry est encore un volcan actif.
Il y a environ 7000 années, un système de fractures de 35 kilomètres de long s’est ouvert au nord-ouest de la caldeira pour former la Rift Zone Nord-Ouest. Des éruptions ont donné naissance à plusieurs cônes dont Lava Butte, un superbe cône de cendre qui a émis une coulée de lave qui a fait obstacle temporairement à la rivière Deschutes. En certains endroits, la lave fluide a entouré des arbres qui se sont consummés en laissant des moules creux, comme ceux que l’on peut découvrir dans la Lava Cast Forest dont je recommande fortement la visite.
La caldeira actuelle du Newberry mesure 6,5 km sur 8, avec à l’intérieur deux très beaux lacs, Paulina Lake et East Lake, très recherchés pour la pêche, la navigation de plaisance, la baignade et le camping. On trouve des sources chaudes sur les berges de ces deux lacs, avec des températures qui atteignent 57° C. En 1987, des températures supérieures à 260° C, à une profondeur de 900 mètres, ont été relevées dans un trou de forage effectué par l’USGS au coeur de la caldeira. Ces mesures de température indiquent qu’un système magmatique actif se cache sous le Newberry.
L’éruption la plus récente du Newberry, de type explosif, il y a environ 1300 ans, a produit des panaches de tephra et des coulées pyroclastiques suivies de l’émission de la Big Obsidian Flow, la structure volcanique la plus jeune du Newberry. Elle couvre un peu plus de 2,6 km2
Cela fait plus de 30 ans que des explorations sont effectuées afin de savoir si le volcan de Newberry présente un potentiel géothermique. Des températures élevées ont été enregistrées, mais la production de fluide a été jugée insuffisante pour générer de l’électricité. À l’automne 2012, un puits profond a fait l’objet d’une expérience de fracturation sous le volcan pour vérifier si l’eau injectée dans le puits pouvait être chauffée en profondeur et envoyée à la surface pour produire de l’énergie (voir mes notes des 1er juin 2008, 29 août 2011, 12 octobre 2012 et 30 novembre 2014). Cette expérience a suscité de nombreuses réactions au sein de la population qui craignait que la sismicité induite réveille le volcan.
Source: USGS.

————————————-

drapeau anglaisNewberry is by no means the most popular volcano in the Cascade Range. However, it is the largest one and covers an area of about 3100 km2. Newberry was built into the shape of a broad shield by repeated eruptions over the past 400,000 years. Throughout its eruptive history, the volcano has produced ash and tephra, pyroclastic flows, and lava flows that range in composition from basalt to rhyolite. About 75,000 years ago a major explosive eruption and collapse event created a large volcanic depression at its summit that now hosts two caldera lakes. Newberry last erupted about 1,300 years ago, and present-day hot springs and geologically young lava flows indicate that it is still an active volcano.
About 7,000 years ago, a 35-kilometre-long fissure system extending northwest from the caldeira opened up to form the Northwest Rift Zone. Eruptions issued from numerous vents including the nice Lava Butte, a cinder cone which emitted a lava flow that temporarily dammed the Deschutes River. In places, fluid lavas surrounded trees, which burnt and left behind hollow molds including those found along the trail at Lava Cast Forest.
The present Newberry caldeira is 6.5 by 8 km and holds two beautiful lakes, Paulina Lake and East Lake, popular for fishing, boating, swimming, and camping. Both lakes have hot springs with temperatures as high as 57°C. In 1987, temperatures higher than 260°C at a depth of 900 metres were found in a USGS drill hole in the centre of the caldera. These temperature measurements indicate that an active magma system lies beneath Newberry Volcano.
The most recent eruption at Newberry, about 1,300 years ago, produced explosive plumes of tephra and pyroclastic flows followed by the slower effusion of the Big Obsidian Flow, the youngest volcanic feature at Newberry. It covers just over 2.6 km2 .
Newberry Volcano has been explored as a potential source for geothermal energy for more than three decades. High temperatures have been encountered, but fluid production has been inadequate for generating power. In fall of 2012, a deep well was the focus of an experiment to open fractures beneath the volcano and test whether water circulated down the hole can be heated and brought to the surface to produce energy (see my notes of 1 June 2008, 29 August 2011, 12 October 2012 and 30 November 2014). The experiment triggered reactions among the population who feared that the accompanying seismicity might wake up the volcano.
Source: USGS.

++++++++++

Lava Butte, coulée de lave et moules de troncs d’arbres:

Newberry 01

Newberry 02

Newberry 03

Newberry 04

Newberry 05

Newberry 06

Tunnel de lave à proximité de Lava Bute:

Newberry 07

Newberry 08

Caldeira du Newberry, avec Paulina Lake et East Lake:

Newberry 09

Newberry 10

Newberry 11

Big Obsidian Flow:

Newberry 12

 Newberry 14

Newberry 15

Photos: C. Grandpey