Le bruit le plus fort jamais enregistré // The loudest sound ever recorded

Aujourd’hui, notre société est devenue extrêmement bruyante et certains sons peuvent atteindre des volumes dangereusement élevés, suffisamment forts pour provoquer une perte auditive permanente. Ainsi, on reproche souvent aux jeunes d’écouter de la musique à un volume beaucoup trop élevé et les concerts envoient des décibels à tout va, sans que cela soit contrôlé.

Mais quel est le bruit le plus fort jamais enregistré sur Terre ?
L’éruption du Krakatau en Indonésie en 1883 est souvent considérée comme le son le plus fort de l’histoire. On a entendu l’explosion à plus de 3 000 kilomètres de distance, et les baromètres du monde entier ont capté la variation de pression que l’événement a provoquée. À 160 km de distance, l’éruption a atteint environ 170 décibels, un niveau sonore suffisant pour causer des problèmes auditifs permanents. À 64 km de distance, des marins ont déclaré que le bruit était si puissant qu’il pouvait leur perforer les tympans. Cependant, nous ne savons pas exactement quel était le niveau de bruit de l’éruption du Krakatau à sa source, car personne n’était présent pour effectuer des mesures avec des instruments fiables. En général, l’oreille humaine tolère des sons jusqu’à environ 140 décibels. Au-delà, le bruit devient douloureux et insupportable. Selon les Instituts nationaux de la santé (NIH), l’écoute de 85 décibels pendant quelques heures, de 100 décibels pendant 14 minutes ou de 110 décibels pendant deux minutes peut causer des dégâts à notre appareil auditif.
On pense aujourd’hui que l’explosion du Krakatau a atteint environ 310 décibels. À ce niveau, les ondes sonores ne se comportent plus comme des sons normaux. Aux alentours de 194 décibels, elles se transforment en ondes de choc. Il s’agit de puissantes zones de pression créées lorsqu’un objet se déplace à une vitesse supersonique. L’onde de choc du Krakatau était si puissante qu’elle a fait sept fois le tour de la Terre. Comme je l’ai indiqué plus haut, il convient de préciser qu’il ne s’agit que d’estimations, car le bruit émis par l’explosion du Krakatau n’a jamais été mesuré scientifiquement.

L’Anak Krakatau aujourd’hui


Séquence éruptive sur l’Anak Krakatau (Photos: C. Grandpey)

Un autre candidat au titre de bruit le plus fort est l’explosion de la météorite de Toungouska en 1908 au-dessus de la Sibérie. Le 30 juin 1908, cet événement a rasé des centaines de kilomètres carrés d’arbres et propagé des ondes de choc à travers le monde. L’explosion de Toungouska a été à peu près aussi forte que celle du Krakatau, avec un niveau sonore d’environ 300 à 315 décibels. Cependant, comme pour l’éruption du Krakatau, l’explosion de Toungouska n’a été enregistrée que par des instruments situés à très grande distance et aucune mesure n’a été effectuée à la source.

Situation et zones d’impact de la météorite de la Toungouska. Zone 1 (R=20 km) : forêt détruite (rouge) Zone 2 (R=100 km) : dégâts, brûlures, morts d’animaux (orange) Zone 3 (R=1500 km) : bruit de l’explosion (dégradé bleu) [Source: Wikipedia]

Plus récemment, on pense que le son le plus fort jamais enregistré est celui de l’éruption du Hunga Tonga-Hunga Haʻapai, un volcan sous-marin de l’archipel tongien, dans le Pacifique Sud, en janvier 2022. L’énergie de l’explosion du 15 janvier 2022 a été mesurée, et est équivalente à celle d’un séisme de magnitude 5,8. Cette puissante éruption a produit une onde sonore qui a fait plusieurs fois le tour du globe et a été entendue par des personnes à des milliers de kilomètres de distance, notamment en Alaska et en Europe centrale.
Tout autour du monde, les baromètres ont enregistré l’onde de choc provoquée par l’explosion. Elle s’est déplacée autour de la planète à une vitesse de 1100 km/h. Selon l’Organisation Mondiale de la Météo, un baromètre suisse a mesuré une amplitude de 2,5 hectoPascals (hPa) de pression.

Source: NASA, NOAA

Étrangement, l’onde de pression la plus puissante de l’histoire récente était presque inaudible pour l’oreille humaine. Des scientifiques ont tenté de créer d’énormes ondes de pression en laboratoire. Lors d’une expérience, des chercheurs ont utilisé un laser à rayons X pour projeter un jet d’eau microscopique. Ils ont produit ainsi une onde de pression estimée à environ 270 décibels. C’est plus bruyant que le décollage de la fusée Saturn V qui a transporté les astronautes d’Apollo sur la Lune, estimé à environ 203 décibels. Cependant, l’expérience au laser a été réalisée dans une chambre à vide, de sorte que l’onde de pression de 270 décibels était totalement inaudible. Les ondes sonores ont besoin d’un milieu, comme l’air, l’eau ou un matériau solide, pour se propager.

En fin de compte, la plupart des scientifiques s’accordent à dire que l’onde sonore la plus puissante enregistrée à l’époque moderne a été celle émise lors de l’éruption du volcan Tonga en 2022.

Source : Live Science via Yahoo News.

———————————————–

Today, our society is noisier than ever and some noises can reach dangerously high volumes, loud enough to cause permanent hearing loss. Youngsters are often reproached for listening to music with a volume tht is much too high. Concerts send high levels of decibels with no control.

But what was the loudest sound ever recorded on Earth?

The 1883 eruption of Krakatau in Indonesia is often considered the loudest sound in history. People heard the blast more than 3,000 kilometers away, and barometers around the world picked up its pressure wave. At 160 km away, the eruption reached an estimated 170 decibels, enough to cause permanent hearing damage. At 64 km away, sailors said that the boom was strong enough to rupture eardrums.However, we don’t really know with precision how loud the Krakatau eruption was at its source because no one was close enough to measure it with reliable instruments.

Typically, people can tolerate sounds up to around 140 decibels, beyond which sound becomes painful and unbearable. According to the National Institutes of Healthearing, damage can occur after listening to 85 decibels for a few hours, 100 decibels for 14 minutes or 110 decibels for two minutes.

Modern estimates suggest that the Krakatau blast reached about 310 decibels. At this level, sound waves no longer behave like normal sound. Instead, at around 194 decibels, they turn into shock waves. These are powerful pressure fronts created when something moves faster than the speed of sound. Krakatau’s shock wave was so strong that it circled the planet seven times.

Again, these are just estimates as the noise emitted by the Krakatau explosion was never scientifically mrasured.

Another contender for the loudest sound is the 1908 Tunguska meteor explosion over Siberia that flattened trees across hundreds of square kilometerss and sent pressure waves around the world. The Tunguska explosion was approximately as loud as the Krakatau blast, at circa 300 to 315 decibels. However, like the Krakatau eruption, the Tunguska blast was recorded only by instruments that were very far away.

More recently, it is believed that the loudest sound recorded is the January 2022 eruption of Hunga, Tonga-Hunga Haʻapai, a submarine volcano in the Tongan archipelago in the southern Pacific Ocean. This powerful eruption produced a sound wave that traversed the globe multiple times and was heard by humans thousands of kilometers away, including in Alaska and Central Europe.

One of the closest scientific stations to the underwater eruption – in Nukua’lofa, about 68 km away – recorded a pressure jump of about 1,800 pascals. One researcher explained that « if you were to try to turn that into a normal « decibel » number at 1 meter from the source, you’d get about 256 decibels. » However, he added that would be bad science, because this wasn’t a normal sound wave at all. Close to the source, it acted more like fast-moving air being pushed outward by the explosion. The Tonga blast was simply too big to fit into the normal decibel scale.

Strangely, the most powerful pressure wave in recent history was mostly inaudible to people. Scientists have tried to create huge pressure waves in laboratories. In one experiment, researchers used an X-ray laser to blast a microscopic water jet, which produced a pressure wave estimated at about 270 decibels. This is louder than the launch of the Saturn V rocket that carried Apollo astronauts to the moon, which was estimated at about 203 decibels. However, the laser experiment was done inside a vacuum chamber, so the 270-decibel pressure wave was completely silent. Sound waves need a medium such as air, water or solid material to travel.

In the end, most scientists admit that the most powerful sound-like wave recorded in the modern era was during the Tonga eruption in 2022.

Source : Live Science via Yahoo News.

Astéroïde de Chicxulub : pas d’hiver d’impact durable ? // Chicxulub asteroid : no long-lasting impact winter ?

Selon une nouvelle étude publiée en mars 2023 dans la revue Geology, l’impact de l’astéroïde qui s’est écrasé sur la péninsule du Yucatán il y a 66 millions d’années et a anéanti les dinosaures n’aurait pas déclenché d’hiver d’impact durable. Cette découverte soulève de nouvelles questions sur ce qui s’est passé sur Terre juste après cet événement qui a provoqué une extinction de 75 % des espèces, y compris tous les dinosaures non aviaires. Pendant des décennies, les scientifiques ont émis l’hypothèse que l’impact avait projeté tellement de poussière dans l’atmosphère qu’il avait provoqué un « hiver d’impact », une période de refroidissement prolongé au cours de laquelle la température de la planète avait chuté.
La nouvelle étude raconte une histoire différente. Les chercheurs ont découvert qu’il n’y avait aucune preuve d’un hiver d’impact. Ils ont analysé des bactéries fossilisées dans des échantillons de charbon avant, pendant et après l’impact de Chicxulub. Suite aux changements de température, ces bactéries grossissent ou amincissent leurs parois cellulaires. Les scientifiques ont découvert qu’au cours des millénaires qui ont suivi l’impact, les bactéries ne semblent pas avoir grossi pour affronter un hiver. Au lieu de cela, ils ont trouvé une tendance au réchauffement d’environ 5 000 ans qui s’est ensuite stabilisée relativement rapidement. Ces années chaudes peuvent avoir été provoquées par des super éruptions volcaniques qui ont émis du CO2 dans l’atmosphère au cours des millénaires qui ont précédé la fin brutale du Crétacé.
Cependant, cela ne signifie pas que l’hypothèse d’un hiver d’impact doit être exclue. Le nuage de poussière généré par l’impact de l’astéroïde n’a peut-être persisté dans l’atmosphère que pendant une décennie ou moins, sans modifier sensiblement la température globale, mais en plongeant la Terre dans l’obscurité. Selon l’étude, le phénomène n’a pas besoin d’être très long. Il suffit de plusieurs mois sans soleil pour tuer la plupart des plantes sur Terre. Avec la disparition de tant de plantes, les herbivores ont eu du mal à trouver suffisamment de nourriture. La mort de ces espèces a entraîné celle des grands carnivores et d’autres espèces qui en dépendaient.
Les chercheurs conviennent qu’il y a probablement eu une courte période de froid et d’obscurité au début de l’extinction de la fin du Crétacé, mais cela ne semble pas avoir déclenché une tendance au refroidissement sur le long terme.
Les résultats de l’étude montrent que la Terre semble capable de rebondir après un événement climatique plus rapidement qu’on ne le pensait auparavant, mais pas sans déclencher une extinction massive.
Les chercheurs veulent maintenant étudier le charbon de plusieurs sites aux États-Unis afin de reconstituer une archive des changements de température au cours des millénaires qui ont précédé l’impact de l’astéroïde. Ils espèrent que ces données leur permettront de faire le distinguo entre les effets du volcanisme et l’impact de Chicxulub.
Source : Yahoo Actualités.

—————————————-

According to a new research published in March 2023 in the journal Geology, the asteroid that smashed into the Yucatán Peninsula 66 million years ago and wiped out the dinosaurs did not trigger a long-lasting impact winter, a discovery that raises new questions about what happened on Earth just after it hit. The event, called the Chicxulub impact, triggered a mass extinction that wiped out 75% of species, including all non-avian dinosaurs. For decades, scientists speculated that the impact tossed so much dust and dirt into the atmosphere that it triggered an « impact winter », a period of prolonged cooling during which global temperatures plummeted.

The new study tells a different story. The researchers «found that there was no evidence for a ‘nuclear winter. » They analyzed bacteria fossilized in coal samples from before, during, and after the Chicxulub impact. In response to temperature changes, these bacteria thicken or thin their cell walls. The scientists found that in the millennia after the impact, the bacteria didn’t seem to be bulking up for winter. Instead, they found a roughly 5,000 year warming trend that stabilized relatively quickly. These hot years may have been the result of super volcanoes belching CO2 into the atmosphere in the millennia leading up to the Cretaceous period’s abrupt end.

However, this doesn’t mean that an impact winter should be excluded. The blanket of dust kicked up by the asteroid may have only lingered in the atmosphere for a decade or less, not noticeably changing global temperatures, but plunging Earth into darkness. « It doesn’t even need to be that long. If you just had months without the sun, it would be enough to kill most of the plants in the world. » With so many plants gone, herbivores struggled to find enough food to eat. As these species died, it killed off large carnivores and other species that depended on them.

The researchers agree that there likely was a short period of cold and darkness at the start of the end-Cretaceous extinction. But it doesn’t seem to have set off a long-term cooling trend.

Their findings indicate that Earth may be capable of rebounding from a climate-changing event faster than previously thought, but not without triggering a mass extinction.

The researchers now plan to investigate coal from more sites in the U.S. in order to piece together a record of temperature changes in the millennia leading up to the asteroid impact. They hope these data will help them disentangle the effects of volcanism from the Chicxulub impact.

Source : Yahoo News.

Représentation d’artiste de impact de  la météorite sur la péninsule du Yucatan (Source: Wikipedia)

Mini glaciation du Dryas récent causée par des éruptions volcaniques // Younger Dryas glaciation caused by volcanic eruptions

La Terre a connu une mini glaciation et des catastrophes en chaîne au cours du Dryas récent – période qui s’étend entre 16 500 et 11 700 ans avant notre ère – il y a environ 12 800 ans. Le climat s’est brusquement refroidi, avec des températures qui ont chuté de 7°C dans l’hémisphère Nord et jusqu’à 10 °C au Groenland. Cet événement de refroidissement a probablement également contribué à l’extinction de grands mammifères, comme les mammouths, les chevaux et les chameaux qui parcouraient autrefois l’Amérique du Nord.

Plusieurs théories ont été avancées pour expliquer cette mini glaciation. En 2007, une équipe de 26 chercheurs affirmait avoir trouvé les preuves que le refroidissement du Dryas récent était dû à la chute d’une météorite, ce qui aurait causé une suite de réactions en chaîne accompagnées de catastrophes de grande ampleur. Cette hypothèse a fait l’objet de multiples articles et controverses. Certains scientifiques doutaient qu’un impact local ait pu engendrer de telles conséquences sur toute la surface de la planète. Toutefois, de nombreux indices confortaient cette théorie.

Aujourd’hui, en 2020, patatras ! Une nouvelle étude intitulée « Volcanic origin for Younger Dryas geochemical anomalies ca. 12,900 B.P. » – Origine volcanique des anomalies géochimiques du Dryas récent il y a environ 12 900 avant J.C – va à l’encontre de l’hypothèse développée en 2007.

L’étude présente des preuves découvertes dans des couches de sédiments recueillis dans la Grotte de Hall au centre du Texas, et qui montrent que l’événement a probablement été causé par des éruptions volcaniques, et non par l’impact d’une météorite. L’étude a été publiée dans Science Advancements.

Des chercheurs de l’Université du Texas et leurs collègues de l’Université Baylor et de l’Université de Houston ont entamé des recherches dans la Grotte de Hall vers 2017 et ont découvert que la signature géochimique des sédiments associés à l’événement de refroidissement n’était pas unique mais s’était produite quatre fois entre 9 000 et 15 000 ans. Cela prouve que l’événement déclencheur de ce refroidissement n’est pas venu de l’espace. .
Une éruption volcanique avait été suggérée comme une possibilité mais l’hypothèse avait été écartée car il n’y avait pas d’empreinte géochimique pour la prouver.
Les chercheurs ont effectué l’analyse isotopique des sédiments recueillis dans la Grotte de Hall et ont découvert que des éléments tels que le ruthénium, le platine, l’iridium, le palladium et le rhénium n’étaient pas présents dans des proportions suffisantes, de sorte que l’ impact d’une météorite ou d’un astéroïde n’a pas pu causer l’événement de refroidissement il y a 12800 ans.

C’est donc la couche d’aérosols générée par l’éruption – ou les éruptions – qui, en réfléchissant la lumière du soleil, a provoqué cet événement de refroidissement. Reste à savoir où se trouve le coupable…

Source: Texas A&M University

———————————————-

The Earth went through a mini glaciation and chain disasters during the Younger Dryas – a period stretching between 16,500 and 11,700 BCE – approximately 12,800 years ago. The climate suddenly cooled, with temperatures dropping by 7°C in the Northern Hemisphere and as much as 10°C in Greenland. This cooling event likely also contributed to the extinction of large mammals, such as mammoths, horses, and camels that once roamed North America.

Several theories have been put forward to explain this mini glaciation. In 2007, a team of 26 researchers claimed to have found evidence that the Younger Dryas’ cooling was due to a meteorite impact, which caused a chain of reactions accompanied by large-scale catastrophes. This hypothesis has been the subject of numerous articles and controversies. Some scientists doubted that a single local impact could have caused such consequences on the entire surface of the planet. However, many clues supported this theory.

 Today, in 2020, a new study entitled « Volcanic origin for Younger Dryas geochemical anomalies ca. 12,900 cal B.P. » goes against the hypothesis developed in 2007. It presents evidence left in layers of sediment retrieved from Hall’s Cave in central Texas showing that the event was most likely caused by volcanic eruptions. The study was published in Science Advancements.

Researchers at the Texas University and their colleagues of Baylor University and Houston University began researching Hall’s Cave around 2017 and discovered that the geochemical signature associated with the cooling event was not unique but occurred four times between 9 000 and 15 000 years ago. Thus, the trigger for this cooling event did not come from space.  .

A volcanic eruption had been considered one possible explanation but was generally dismissed because there was no associated geochemical fingerprint.

The researchers completed the isotopic analysis of sediments retrieved from Hall’s Cave and found that elements such as ruthenium, platinum, iridium, palladium, and rhenium were not present in the correct proportions, indicating that a meteor or asteroid impact could not have caused the event.

Then, it was the layer  of aerosols generated by the eruption(s) that reflected the incoming solar radiation away from the Earth, and led to the cooling event. The question is to know which volcano was responsible for it…

Source: Texas A&M University

Courbes de températures reconstituées à partir de carottes de glace en Antarctique et au Groenland. Elles montrent l’importance de l’évènement de refroidissement du Dryas récent dans l’hémisphère nord. (Source : Wikipedia)

Cratères d’impact // Impact craters

Le mot « cratère » est généralement associé aux volcans. Il ne faudrait pourtant pas oublier les cratères d’impact laissés par le contact très violent entre les météorites et la surface de la Terre. Il y a environ 150 cratères d’impact sur notre planète. Vous trouverez la liste en cliquant sur le lien ci-dessous :

 https://en.wikipedia.org/wiki/List_of_impact_craters_on_Earth

Le 23 septembre 2019, des chercheurs ont confirmé que le cratère Karla, situé au Tatarstan, en Russie, constituait lui aussi une structure d’impact. Le cratère, d’un diamètre de 10 km, fait désormais partie des autres grands cratères laissés par les météorites. Il est situé près de la frontière entre la République du Tatarstan et la République de Tchouvache, à environ 163 km de l’Université fédérale de Kazan. Cette confirmation du cratère d’impact a été possible grâce à l’analyse d’un certain nombre d’échantillons paléomagnétiques, pétromagnétiques et géochimiques. Les chercheurs proviennent de l’Université fédérale de Kazan, du CEREGE (France), de l’Institut Vernadsky de l’Académie des Sciences de Russie et de l’Institut de Minéralogie expérimentale de l’Académie des Sciences de Russie.

La France possède un cratère d’impact en Limousin, à une trentaine de kilomètres de mon domicile. Il s’agit de l’astroblème de Rochechouart-Chassenon, aussi surnommé « la météorite de Rochechouart », situé à la limite entre la Haute-Vienne et la Charente. Il s’agit d’un ensemble de marques laissées par l’impact d’un astéroïde tombé il y a environ 206,9 ± 0,3 millions d’années, soit environ 5,6 millions d’années avant la limite entre le Trias et le Jurassique. Cette datation remet en cause les conclusions de certaines études qui considéraient que la chute de cet astéroïde était contemporaine de l’extinction massive du Trias-Jurassique.

À cette époque, un astéroïde d’un kilomètre et demi de diamètre a percuté la Terre à une vitesse d’environ vingt kilomètres par seconde, au lieu-dit de La Judie, sur la commune de Pressignac en Charente. Il a laissé un cratère d’au moins 21 kilomètres de diamètre. Des éjectas sont retombés à plus de 450 kilomètres à la ronde.

Depuis cette époque lointaine, l’érosion a complètement effacé toute trace de l’événement dans le relief. Par contre, le sous-sol conserve de nombreuses roches fracturées et fondues appelées brèches. Ces roches particulières ont été utilisées pour la construction de Cassinomagus, autrement dit des superbes thermes de Chassenon dont je recommande fortement la visite. En se promenant dans les villages du secteur, on repère vite ces pierres à l’allure volcanique avec leurs vacuoles sur les murs des habitations et des monuments.

Source : Université fédérale de Kazan, Wikipedia.

————————————————

The word « crater » is usually associated with volcanoes. However, one should not forget the impact craters left by the very violent contact between the meteorites and the surface of the Earth. There are about 150 impact craters on our planet. You will find the list by clicking on the link below:
https://en.wikipedia.org/wiki/List_of_impact_craters_on_Earth

Karla Crater, located in Tatarstan, Russia was confirmed to be an impact structure by researchers on September 23rd, 2019. The crater, which is 10 kilometres in diameter, is now one of about 150 other large impact structures on the planet. It is located near the border of the Republic of Tatarstan and Chuvash Republic, about 163 km from Kazan Federal University.

The confirmation of the crater was made possible by the analysis of a number of paleomagnetic, petromagnetic and geochemical samples. The researchers were from Kazan Federal University, CEREGE (France), Vernadsky Institute of the Russian Academy of Sciences, and Institute of Experimental Mineralogy of the Russian Academy of Sciences.

France has an impact crater in Limousin, about thirty kilometres from my home. This is the Rochechouart-Chassenon astrobleme, also called « Rochechouart meteorite »,on the border between Haute-Vienne and Charente. This is a set of marks left by the impact of an asteroid that fell about 206.9 ± 0.3 million years ago, or about 5.6 million years before the boundary between Triassic and Jurassic. This dating challenges the conclusions of some other studies that considered the fall of this asteroid was contemporary with the Triassic-Jurassic mass extinction.
At that time, an asteroid one kilometre and a half in diameter struck the Earth at a speed of about twenty kilometres per second, at a place called La Judie, in the botough of Pressignac in Charente. It left a crater at least 21 kilometres in diameter. Ejecta fell as far as 450 kilometres around.
Since that time, erosion has completely erased all the traces of the event in the relief. In contrast, the subsoil retains many fractured and melted rocks called breccias. These particular rocks were used for the construction of Cassinomagus, the beautiful thermal baths of Chassenon whose visit I strongly recommend. While walking in the villages of the area, one will quickly notice these volcanic stones with their vacuoles on the walls of houses and monuments.
Source: Federal University of Kazan, Wikipedia.

Aux Etats Unis, Meteor Crater (Arizona) est l’un des meilleurs endroits au monde pour observer le cratère d’impact d’une météorite. On y trouve de superbes échantillons de brèches ainsi que des impactites qui montrent bien les frictions, compressions et fortes chaleurs auxquelles ont été soumises les roches au moment de l’événement (Photos : C. Grandpey)