Les volcans de Io // The volcanoes of Io

drapeau francaisUne nouvelle étude publiée par la NASA le 10 Septembre 2015 présente un nouveau modèle pour expliquer l’existence des volcans sur Io, celle des quatre lunes de Jupiter qui est la plus proche de la planète.
Io est considérée comme l’objet le plus actif d’un point de vue volcanique dans notre système solaire, avec des centaines d’éruptions qui ont émis de la lave jusqu’à 400 km de hauteur. La nouvelle étude suggère que l’influence gravitationnelle de Jupiter, couplée à la composition interne de Io – essentiellement de la matière en fusion – explique la position anormale des volcans à la surface de cette lune.
Des études antérieures partaient du principe que Io était un objet solide, mais déformable (un peu comme l’argile). Ces mêmes études ajoutaient que Io subissait une légère déformation due à la pression exercée par l’effet gravitationnel de Jupiter. Toutefois, lorsque les chercheurs ont comparé les modèles informatiques basés sur cette hypothèse avec des photos de la surface de Io prises par des engins spatiaux, ils ont découvert que la plupart des volcans de Io étaient décalés de 30 à 60 degrés par rapport aux régions qui émettent la chaleur la plus intense.
La théorie suggérée par ces études antérieures était la suivante : Etant la lune la plus proche de Jupiter, Io orbite plus vite que les autres lunes plus distantes de la planète. Ainsi, Io effectue deux orbites chaque fois qu’Europa en effectue une seule. En raison de ce phénomène, Io subirait une plus forte attraction gravitationnelle de la même position orbitale, ce qui entraînerait sa déformation. Cette activité géologique intense et cohérente était considérée comme le résultat de l’attraction entre Jupiter et ses autres lunes, ce qui provoquerait un déplacement de la matière à l’intérieur de Io, produirait de la chaleur, provoquerait sa déformation.
Pourtant, cette seule interaction avec Europa ne pouvait pas expliquer le décalage des volcans sur Io. Le comportement volcanique étrange de Io demandait une autre explication qui incorporait non seulement la chaleur produite par l’attraction de Jupiter, mais aussi la chaleur générée par quelque chose d’autre. Dans le nouveau modèle proposé par la NASA, la chaleur provient du mouvement du magma proprement dit. Les auteurs de l’étude sont persuadés que la matière en fusion à l’intérieur de Io est un mélange d’élément liquide (le magma) et de roche en voie de solidification. Comme ce mélange se déplace sous l’influence de l’attraction gravitationnelle de Jupiter, il tourbillonne et vient frotter contre la roche solide qui l’entoure, frottement qui génère la chaleur.
Cette nouvelle recherche de la NASA implique que les océans qui se trouvent sous les croûtes de lunes soumises à une attraction gravitationnelle sont peut-être être plus fréquents qu’ont le pensait jusqu’à présent. Le phénomène s’applique aux océans formés à partir de magma ou d’eau, ce qui augmente les chances d’une vie ailleurs dans l’univers.
Source: NASA
Voici une vue du panache éruptif à la surface de Io (Source : NASA) :
http://en.es-static.us/upl/2015/09/io-volcano-cp.gif

———————————————

drapeau anglaisA new study released by NASA on September 10th 2015 explains a new model for what generates the volcanoes on Io, the innermost of Jupiter’s four moons. Io is known as the most volcanically active object in our solar system, with hundreds of eruptions ejecting lava up to 400 km off the moon’s surface. The new research suggests that the gravitational influence of Jupiter on the molten interior of Io is what causes the misplaced volcanoes on Io’s surface. Previous studies had revealed that Io’s volcanoes were offset by 30 to 60 degrees from the places where the most intense heat was produced. These studies assumed Io was a solid object, but deformable (a bit like clay). They added Io was slightly deformed from the effect of Jupiter’s gravitational squeezing its innermost large moon. However, when scientists compared computer models based on this assumption to actual spacecraft photos of Io’s surface, they discovered that most of Io’s volcanoes were offset 30 to 60 degrees.
As an inner moon of Jupiter’s, Io orbits faster than the next large moon outward, Europa, completing two orbits every time Europa completes one. This regular timing leads Io to feel the strongest gravitational pull from the same orbital location, which distorts its shape. This intense and consistent geological activity was known to be the result of a pulling between Jupiter and its other moons – which causes material within Io to shift, generate heat, and distorts it shape. Yet even this interaction with Europa could not explain the misplaced volcanoes on Io.
Io’s odd volcanic activity called for a new explanation, which incorporated heat from not just the tidal flexing by Jupiter, but also the heat generated by something else. In this new model, the heat comes from the magma’s movement itself.
The authors of the study now believe the molten interior of Io is a slurry mix of liquid (magma) and solidifying rock. As this molten mix flows under the influence of tidal flexing, it swirls and rubs against the surrounding solid rock, generating heat due to friction.
This new NASA research implies that oceans beneath the crusts of tidally stressed moons may be more common than expected. The phenomenon applies to oceans made from either magma or water, potentially increasing the odds for life elsewhere in the universe.
Source: NASA
Here is a view of the eruptive plume at the surface of Io (Source: NASA):
http://en.es-static.us/upl/2015/09/io-volcano-cp.gif

Io volcan

Source: NASA

Le lac de lave de Io (lune de Jupiter)

drapeau francaisIo, celle des quatre lunes de Jupiter la plus proche de la planète, est à peine plus grande que notre Lune mais c’est le corps céleste le plus actif su système solaire d’un point de vue géologique. Des centaines de zones volcaniques parsèment sa surface qui est essentiellement couverte de soufre et de dioxyde de soufre.
La plus grande de ces zones volcaniques, baptisée Loki (en référence au dieu nordique souvent associé au feu et au chaos), est une patère (autrement dit une dépression volcanique) dans laquelle la croûte de lave plus dense qui surmonte un lac de lave s’enfonce épisodiquement dans le lac, ce qui provoque une élévation de l’émission thermique régulièrement observée depuis la Terre.

Loki, avec un diamètre de seulement 200 km et située à au moins 600 millions de kilomètres de la Terre, était, jusqu’à récemment, trop petite pour être observée en détail avec un télescope optique / infrarouge au sol.
Avec ses deux miroirs de 8,4 mètres de diamètre fixés à 6 mètres de distance l’un de l’autre sur la même monture, le Large Binocular Telescope (LBT), en combinant la lumière par interférométrie, fournit des images d’un même niveau de détail qu’un télescope avec un miroir de 22,80 m. (Rappelons que le Thirty Meter Telescope (TMT) est encore à l’état de projet sur le Mauna Kea à Hawaii et doit faire face à une forte opposition de la part des Hawaiiens de souche). Grâce à l’Interféromètre du Large Binocular Telescope Interferometer (LBTI), une équipe internationale de chercheurs a été en mesure d’observer la Loki Patera, avec des détails encore jamais perçus depuis la Terre. Leur étude est publiée dans The Astronomical Journal.
Vous trouverez plus de détails techniques en cliquant sur ce lien:
http://www.lbto.org/loki-fizeau-2015.html

———————————————–

drapeau anglaisIo, the innermost of the four moons of Jupiter, is only slightly bigger than our own Moon but is the most geologically active body in our solar system. Hundreds of volcanic areas dot its surface, which is mostly covered with sulphur and sulphur dioxide.

The largest of these volcanic features, named Loki (after the Norse god often associated with fire and chaos), is a patera (i.e. a volcanic depression) in which the denser lava crust solidifying on top of a lava lake episodically sinks in the lake, yielding a rise in the thermal emission which has been regularly observed from Earth.

Loki, only 200 km in diameter and at least 600 million kilometres from Earth, was, up to recently, too small to be looked at in detail from any ground based optical/infrared telescope.

With its two 8.4-metre mirrors set on the same mount 6 metres apart, the Large Binocular Telescope (LBT), by combining the light through interferometry, provides images at the same level of detail a 22.8 m telescope would reach. Thanks to the Large Binocular Telescope Interferometer (LBTI), an international team of researchers was able to look at Loki Patera, revealing details as never before seen from Earth; their study is published today in the Astronomical Journal.

More technical details by clicking on this link:

http://www.lbto.org/loki-fizeau-2015.html

Io-Loki

Image de la Loki Patera (en orange) prise par le LBT. Elle a été posée sur une image de la dépression volcanique prise par la sonde Voyager. L’émission de lave (de couleur orange) s’étale dans le sens nord-sud; elle se situe principalement dans les coins sud du lac.  (Credit: LBTO-NASA)

Io et les aurores de Jupiter // Io and Jupiter’s auroras

drapeau francaisIo, la lune volcanique de Jupiter, est apparemment responsable des spectaculaires éclats de lumière qui illuminent les aurores bleues de la planète.

Aurore-Jupiter

(Source:  NASA)

Les aurores apparaissent lorsque des particules chargées électriquement entrent en collision avec l’atmosphère d’une planète où elles excitent les gaz et font naître les superbes lueurs que l’on sait. Le soleil est la source des particules qui produisent les aurores sur Terre.
Les aurores de Jupiter, qui sont déclenchés par des particules provenant des lunes de la planète ainsi que du soleil, développent des milliers de fois plus d’énergie que celles sur Terre. Elles sont constantes, mais elles montrent parfois une intensité incroyable. La cause de ce phénomène ne serait pas une éruption solaire, mais l’activité volcanique sur Io.
Depuis le mois de janvier 2014, un télescope à bord du satellite Hisaki de la Japan Aerospace Exploration Agency a observé Jupiter pendant deux mois. Dans le même temps, le télescope spatial Hubble de la NASA a également observé Jupiter pendant une heure chaque jour pendant deux semaines. Les deux engins ont enregistré des éclats de lumière aléatoires au sein des aurores polaires de la planète.
Ces éclats de lumière ont eu lieu les jours où le flux de particules chargées en provenance du soleil était relativement faible. Les chercheurs en ont conclu qu’ils étaient probablement le résultat d’interactions complexes entre Jupiter et Io, et peut-être les trois autres lunes de Jupiter – Callisto, Ganymède et Europa.
Io, la lune la plus proche de Jupiter, est entraînée dans l’attraction gravitationnelle entre Jupiter et les deux autres grandes lunes, Europe et Ganymède. Le phénomène génère une chaleur interne, processus qui, à son tour, conditionne l’activité d’une série de volcans sur Io. Quand ces volcans entrent en éruption, ils envoient dans l’espace de grandes quantités d’électrons et d’atomes chargés électriquement.
Le champ magnétique de Jupiter attire ces particules chargées au cours de son passage à côté de Io et il forme une région annulaire de plasma à la densité relativement élevée autour de Jupiter. Cette magnétosphère est si vaste qu’elle englobe toutes les lunes de Jupiter et se prolonge jusque vers Saturne. Au fil du temps, les particules présentes dans la magnétosphère interagissent avec l’atmosphère de Jupiter, donnant naissance à la belle lueur qui encercle le pôle nord de cette dernière.
C’est ainsi que Io contribue à sa façon aux aurores de Jupiter. Mais la lune provoque aussi, semble-t-il, des éclats de lumière dans les aurores boréales. Ils se produisent lorsque des particules chargées pénètrent directement vers l’atmosphère de Jupiter; ces particules chargées continuent à se déplacer à travers la magnétosphère, mais elles ne sont pas déviées en cours de route.
Source: Space.com

 ———————————————

drapeau anglaisJupiter’s volcanic moon Io is apparently responsible for the dramatic brightenings of the planet’s blue auroras (see picture above).

Auroras are generated when electrically charged particles collide with a planet’s atmosphere, where they excite gases and cause them to glow. The sun is the source of the particles that produce Earth’s auroras.

Jupiter’s auroras, which are sparked by particles from the planet’s moons as well as the sun, are thousands of times more energetic than Earth’s. They’re also constant, but every once in a while they grow to an incredible intensity. It might be the result not of a solar flare but of volcanic activity on Io.

Starting in January 2014, a telescope aboard the Japan Aerospace Exploration Agency’s Hisaki satellite focused on Jupiter for two months. At the same time, NASA’s Hubble Space Telescope also focused on Jupiter for an hour each day for two weeks. Both observatories recorded random brightenings of the planet’s polar auroras.

These flare-ups occurred on days when the sun’s flow of charged particles was relatively weak. So the researchers conclude that they must be the result of the complex interactions between Jupiter and Io, and perhaps the other three moons of Jupiter – Callisto, Ganymede and Europa.

Io, Jupiter’s closest moon, gets caught in this gravitational tug of war between Jupiter and the two other large moons, Europa and Ganymede. The phenomenon drives internal heat, a process which, in turn, drives a series of active volcanoes on Io. And when those volcanoes erupt, they blast large amounts of electrons and electrically charged atoms into space.

Jupiter’s magnetic field catches these charged particles as it sweeps past Io and forms a donut-shaped region of relatively high-density plasma around Jupiter. This magnetosphere is so large that it encapsulates all of Jupiter’s moons and extends nearly as far as Saturn. Over time, the particles in the magnetosphere interact with Jupiter’s atmosphere, creating the beautiful glow circling Jupiter’s north pole.

This is one way Io contributes to Jupiter’s auroras. But the moon also apparently causes flare-ups in the auroras. They occur when charged particles flow directly toward Jupiter’s atmosphere; these charged particles still travel through the magnetosphere, but they don’t get sidetracked along the way.

Source : Space.com

De puissantes éruptions volcaniques sur Io, la lune de Jupiter // Powerful eruptions on Jupiter’s Io

drapeau francaisDes chercheurs d’Université de Californie à Berkeley ont observé trois importantes éruptions volcaniques sur Io, la lune de Jupiter, en l’espace de deux semaines au cours du mois d’août 2013. Les astronomes pensent que ces éruptions, qui peuvent envoyer des matériaux à des centaines de kilomètres de hauteur, sont probablement beaucoup plus fréquentes qu’on le pensait jusqu’à présent.
Io présente un diamètre d’environ 3700 km ; c’est la lune ou la planète la plus active du système solaire d’un point de vue volcanique. C’est également le seul corps du système solaire en dehors de la Terre à posséder des volcans qui produisent de la lave extrêmement chaude. En raison de la faible gravité de Io, de grandes éruptions volcaniques envoient des matériaux à une très grande hauteur dans l’espace. Selon les chercheurs, la quantité d’énergie émise par ces éruptions fait naître des fontaines de lave qui jaillissent en produisant un très grand volume de lave par seconde et des coulées qui se propagent rapidement à la surface de Io.
Les trois événements observés, y compris l’éruption la plus puissante du 29 août, présentaient probablement des « rideaux de feu » émis par des fissures de plusieurs kilomètres de long.
Les deux premières éruptions ont été découvertes le 15 août 2013 au moyen de l’un des deux télescopes de 10 mètres exploités par l’observatoire Keck à Hawaï. On pense que l’éruption la plus intense, dans la caldeira Rarog Patera, a produit une coulée de lave de 130 km2 et de 9 mètres d’épaisseur, tandis que l’autre, à proximité du cratère Heno Patera, a généré des coulées couvrant 320 km2. Les deux éruptions ont eu lieu dans l’hémisphère sud de Io et avaient pratiquement disparues au moment des observations effectuées cinq jours plus tard.
La troisième éruption, l’une des plus intenses jamais observées sur Io, a eu lieu le 29 août 2013 et a été observée par le télescope Gemini Nord sur le Mauna Kea. Au moment de l’observation, la source thermique avait une superficie de 83 km2. La température de la lave, telle qu’elle a été modélisée, a révélé qu’elle avait à peine le temps de refroidir, ce qui suggère que des fontaines de lave ont dominé l’événement.
L’équipe scientifique a observé la chaleur émise par la troisième éruption pendant près de deux semaines après sa découverte afin de comprendre comment les volcans impactent l’atmosphère de Io et quelle influence ces éruptions peuvent avoir sur la couche de gaz ionisé – le tore de plasma – qui entoure Jupiter près de l’orbite de Io. Ces observations ont été programmées pour coïncider avec les observations du tore de plasma par la sonde japonaise Hisaki afin de corréler les différents ensembles de données.
Sources: Sites web Space.com & Astronomy.

 ———————————————-

drapeau anglaisResearchers from the University of California at Berkeley observed three massive volcanic eruptions on Jupiter’s moon Io in August 2013 within a two-week period. Astronomers think that these events, which can send material hundreds of kilometres above the surface, might be much more common than previously thought.

Io is about 3,700 kilometres across and the most volcanically active moon or planet in our solar system. It also is the only body in the solar system with volcanoes erupting extremely hot lava other than Earth. Because of Io’s low gravity, large volcanic eruptions send debris high into space. According to the researchers, the amount of energy being emitted by these eruptions implies lava fountains gushing out of fissures at a very large volume per second, forming lava flows that quickly spread over the surface of Io.

The three events, including the most powerful eruption on August 29th, were likely characterized by “curtains of fire,” as lava blasted out of fissures perhaps several kilometres long.

The first two massive eruptions were discovered on August 15th 2013, using one of two 10-metre telescopes operated by the Keck Observatory in Hawaii. The brightest eruption, at a caldera named Rarog Patera, was calculated to have produced a 130-square-km, 9-metre-thick lava flow, while the other, near a caldera called Heno Patera, produced flows covering 320 square km. Both were in Io’s southern hemisphere and were nearly gone when imaged five days later.

The third and even brighter eruption (one of the brightest ever seen on Io) occurred on August 29th and was observed from the Gemini North telescope on Mauna Kea. At the time of the observation, the thermal source had an area of up to 83 square km. The modeled temperature of the lava indicated it barely had time to cool, suggesting that lava fountains dominated the event.

The team tracked the heat of the third outburst for almost two weeks after its discovery to investigate how volcanoes influence Io’s atmosphere and how these eruptions feed a layer of ionized gas – the Io plasma torus – that surrounds Jupiter near Io’s orbit. The observations were timed to coincide with observations of the plasma torus by the Japanese Hisaki spacecraft in order to correlate the different data sets.

Sources: Space.com & Astronomy websites.

Io-blog

L’éruption du 29 août 2013 sur Io (Crédit photo:  NSF/NASA/JPL-Caltech//UC Berkeley/Gemini Observatory)